

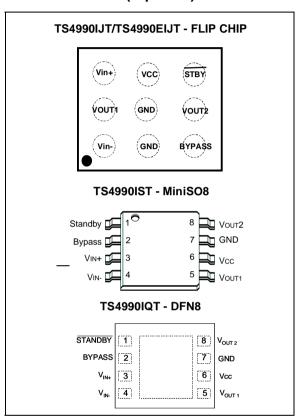
1.2W Audio Power Amplifier with Active-Low Standby Mode

- Operating from $V_{cc} = 2.2V$ to 5.5V
- 1.2W Output power @ Vcc=5V, THD=1%, f=1kHz, with 8Ω Load
- Ultra-low consumption in standby mode (10nA)
- 62dB PSRR @ 217Hz in grounded mode
- Near-zero POP & CLICK
- Ultra-low distortion (0.1%)
- Unity gain stable
- Available in a 9-bump Flip-Chip, MiniSO8 and DFN8 packages

Description

The TS4990 has been designed for demanding audio applications such as mobile phones and to minimize the number of external components.

This Audio Power Amplifier is capable of delivering 1.2W of continuous RMS Output Power into an 8Ω load @ 5V.

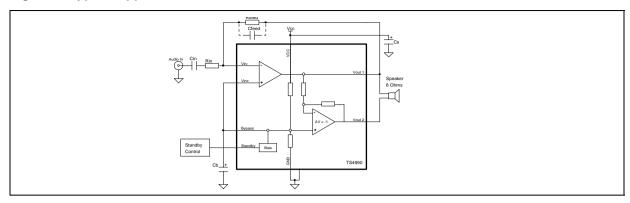

An externally-controlled standby mode reduces the supply current to less than 10nA. It also includes internal thermal shutdown protection.

The unity-gain stable amplifier can be configured by external gain setting resistors.

Applications

- Mobile phones (cellular / cordless)
- Laptop / notebook computers

Pin Connections (top view)


- PDAs
- Portable audio devices

Order Codes

Part Number	Temperature Range	Package	Packing	Marking
TS4990IJT		Flip-Chip	Tana 8 Dani	400
TS4990EIJT ¹	-40, +85°C		Tape & Reel	A90
TS4990IST	-40, +00 C	mini SO	Tape & Reel	K990
TS4990IQT		DFN	Tape & Reel	K990
TS4990EKIJT	-40, +85°C	FC+Back coating	Tape & Reel	A90

1) Lead free Flip-Chip part number

Figure 1: Typical application schematic

1 Absolute Maximum Ratings

Table 1:Key parameters and their absolute maximum ratings

Symbol	Parameter	Value	Unit
VCC	Supply voltage ¹	6	V
V _i	Input Voltage ²	G _{ND} to V _{CC}	V
T _{oper}	Operating Free Air Temperature Range	-40 to + 85	°C
T _{stg}	Storage Temperature	-65 to +150	°C
Tj	Maximum Junction Temperature	150	°C
R _{thja}	Thermal Resistance Junction to Ambient Flip-Chip ³ MiniSO8 DFN8	250 215 120	°C/W
Pd	Power Dissipation	Internally Limited	
ESD	Human Body Model	2	kV
ESD	Machine Model	200	V
	Latch-up Immunity	200mA	
	Lead Temperature (soldering, 10sec) Lead Temperature (soldering, 10sec) for Lead-Free version	250 260	°C

¹⁾ All voltage values are measured with respect to the ground pin.

Table 2:Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2.2 to 5.5	V
V _{ICM}	Common Mode Input Voltage Range	1.2V to V _{CC}	V
VSTB	Standby Voltage Input: Device ON Device OFF	$1.35 \le V_{STB} \le V_{CC}$ $GND \le V_{STB} \le 0.4$	V
RL	Load Resistor	≥ 4	Ω
ROUT- GND	Resistor Output to GND (V _{STB} = GND)	≥ 1	МΩ
TSD	Thermal Shutdown Temperature	150	°C
RTHJA	Thermal Resistance Junction to Ambient Flip-Chip ¹ MiniSO8 DFN8 ²	100 190 40	°C/W

¹⁾ This thermal resistance is reached with a 100mm² copper heatsink surface.

²⁾ The magnitude of input signal must never exceed V_{CC} + 0.3V / G_{ND} - 0.3V

³⁾ Device is protected in case of over temperature by a thermal shutdown active @ 150°C.

²⁾ When mounted on a 4-layer PCB.

2 Electrical Characteristics

Table 3:Electrical characteristics when $V_{CC} = +5V$, GND = 0V, $T_{amb} = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		3.7	6	mA
I _{STANDBY}	Standby Current 1 No input signal, Vstdby = G_{ND} , RL = 8Ω		10	1000	nA
Voo	Output Offset Voltage No input signal, RL = 8Ω		1	10	mV
Po	Output Power THD = 1% Max, F = 1kHz, RL = 8Ω	0.9	1.2		W
THD + N	Total Harmonic Distortion + Noise Po = 1Wrms, Av = 2, 20Hz \leq F \leq 20kHz, RL = 8Ω		0.2		%
PSRR	Power Supply Rejection Ratio ² RL = 8Ω , Av = 2, Vripple = 200mVpp , Input Grounded F = 217Hz F = 1kHz	55 55	62 64		dB
T _{WU}	Wake-Up Time (Cb = 1μF)		90	130	ms
T _{STDB}	Standby Time (Cb = 1µF)		10		μs
V _{STDBH}	Standby Voltage Level High			1.3	V
V _{STDBL}	Standby Voltage Level Low			0.4	V
Φ_{M}	Phase Margin at Unity Gain $R_L = 8\Omega$, $C_L = 500 pF$		65		Degrees
GM	Gain Margin $R_L = 8\Omega$, $C_L = 500 pF$		15		dB
GBP	Gain Bandwidth Product $R_L = 8\Omega$		1.5		MHz

¹⁾ Standby mode is activated when Vstdby is tied to Gnd

²⁾ All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc.

Table 4:Electrical Characteristics when $V_{CC} = +3.3V$, GND = 0V, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		3.3	6	mA
I _{STANDBY}	Standby Current 1 No input signal, Vstdby = G_{ND} , RL = 8Ω		10	1000	nA
Voo	Output Offset Voltage No input signal, RL = 8Ω		1	10	mV
Ро	Output Power THD = 1% Max, F = 1kHz, RL = 8Ω	375	500		mW
THD + N	Total Harmonic Distortion + Noise Po = 400mWrms, Av = 2, 20Hz \leq F \leq 20kHz, RL = 8Ω		0.1		%
PSRR	Power Supply Rejection Ratio ² RL = 8Ω , Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz	55 55	61 63		dB
T _{WU}	Wake-Up Time (Cb = 1µF)		110	140	ms
T _{STDB}	Standby Time (Cb = 1µF)		10		μs
V_{STDBH}	Standby Voltage Level High			1.2	V
V _{STDBL}	Standby Voltage Level Low			0.4	V
Φ_{M}	Phase Margin at Unity Gain $R_L = 8\Omega$, $C_L = 500pF$		65		Degrees
GM	Gain Margin $R_L = 8\Omega$, $C_L = 500 pF$		15		dB
GBP	Gain Bandwidth Product $R_L = 8\Omega$		1.5		MHz

¹⁾ Standby mode is activated when Vstdby is tied to Gnd

²⁾ All PSRR data limits are guaranteed by production sampling tests Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc.

Table 5:Electrical characteristics when V_{CC} = 2.6V, GND = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply Current No input signal, no load		3.1	6	mA
I _{STANDBY}	Standby Current 1 No input signal, Vstdby = G_{ND} , RL = 8Ω		10	1000	nA
Voo	Output Offset Voltage No input signal, RL = 8Ω		1	10	mV
Ро	Output Power THD = 1% Max, F = 1kHz, RL = 8Ω	220	300		mW
THD + N	Total Harmonic Distortion + Noise Po = 200mWrms, Av = 2, 20Hz \leq F \leq 20kHz, RL = 8 Ω		0.1		%
PSRR	Power Supply Rejection Ratio ² RL = 8Ω , Av = 2, Vripple = 200mVpp, Input Grounded F = 217Hz F = 1kHz	55 55	60 62		dB
T _{WU}	Wake-Up Time (Cb = 1µF)		125	150	ms
T _{STDB}	Standby Time (Cb = 1µF)		10		μs
V _{STDBH}	Standby Voltage Level High			1.2	V
V _{STDBL}	Standby Voltage Level Low			0.4	V
Φ_{M}	Phase Margin at Unity Gain $R_L = 8\Omega$, $C_L = 500pF$		65		Degrees
GM	Gain Margin $R_L = 8\Omega$, $C_L = 500 pF$		15		dB
GBP	Gain Bandwidth Product $R_L = 8\Omega$		1.5		MHz

¹⁾ Standby mode is activated when Vstdby is tied to Gnd

Table 6:Components description

Components	Functional Description
R _{in}	Inverting input resistor which sets the closed loop gain in conjunction with R_{feed} . This resistor also forms a high pass filter with C_{in} (fc = 1 / (2 x Pi x Rin x Cin))
C _{in}	Input coupling capacitor which blocks the DC voltage at the amplifier input terminal.
R _{feed}	Feed back resistor which sets the closed loop gain in conjunction with R _{in} .
C _s	Supply Bypass capacitor which provides power supply filtering.
C _b	Bypass pin capacitor which provides half supply filtering.
C _{feed}	Low pass filter capacitor allowing to cut the high frequency (low pass filter cut-off frequency 1 / (2 x Pi x R_{feed} x C_{feed}))
Av	Closed loop gain in BTL configuration = 2 x (R _{feed} / R _{in})
Exposed Pad	DFN8 Exposed pad is electricaly connected to pin7. See page 24 for more information.

All PSRR data limits are guaranteed by production sampling tests
 Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the sinusoidal signal superimposed upon Vcc.

Figure 2: Open Loop Frequency Response

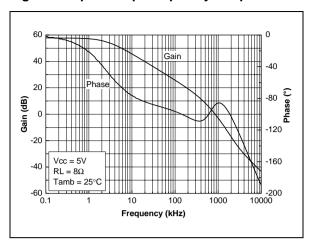


Figure 3: Open Loop Frequency Response

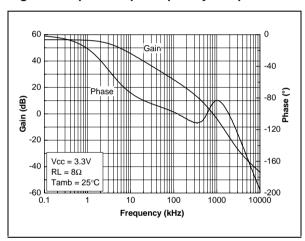


Figure 4: Open Loop Frequency Response

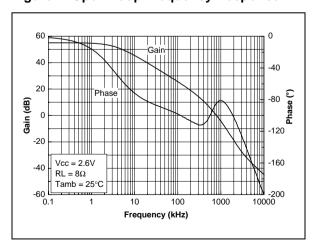


Figure 5: Open Loop Frequency Response

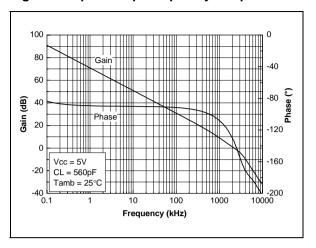


Figure 6: Open Loop Frequency Response

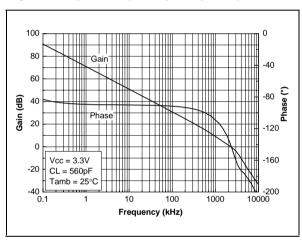


Figure 7: Open Loop Frequency Response

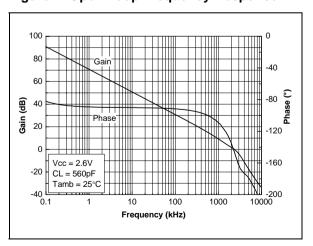


Figure 8: Power Supply Rejection Ratio (PSRR) vs Power supply

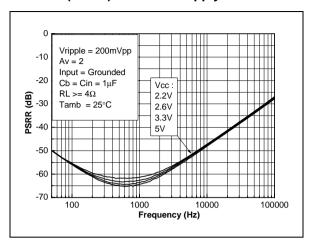


Figure 9: Power Supply Rejection Ratio (PSRR) vs Power supply

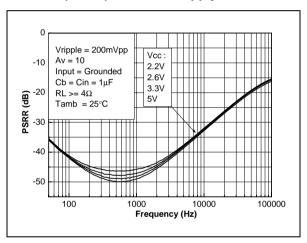


Figure 10: Power Supply Rejection Ratio (PSRR) vs Power supply

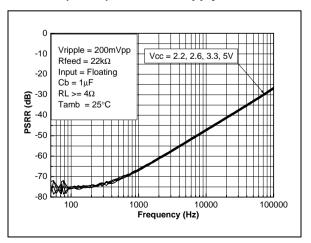


Figure 11: Power Supply Rejection Ratio (PSRR) vs Power supply

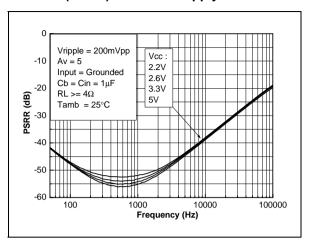


Figure 12: Power Supply Rejection Ratio (PSRR) vs Power supply

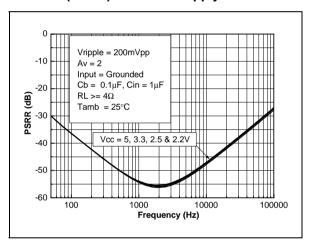


Figure 13: Power Supply Rejection Ratio (PSRR) vs Power supply

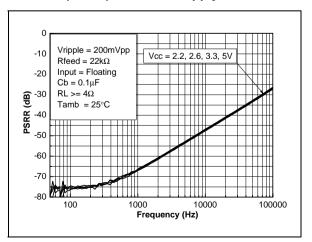


Figure 14: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

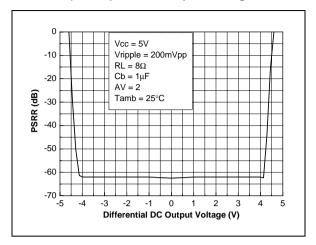


Figure 15: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

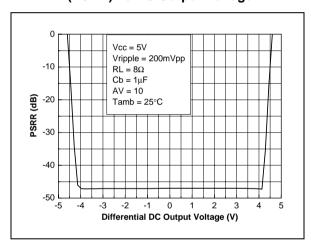


Figure 16: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

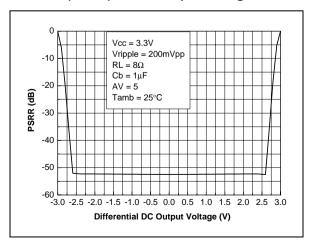


Figure 17: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

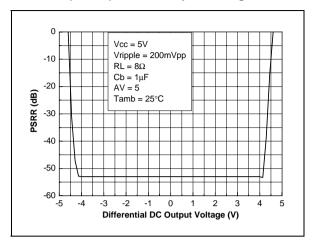


Figure 18: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

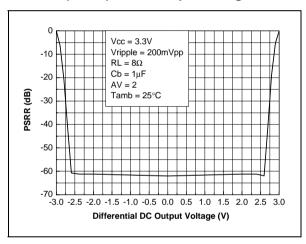


Figure 19: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

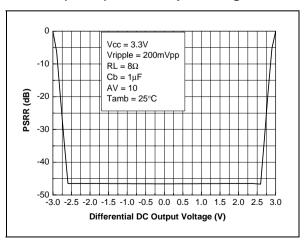


Figure 20: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

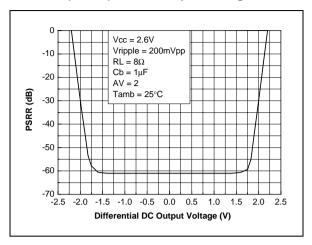


Figure 21: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

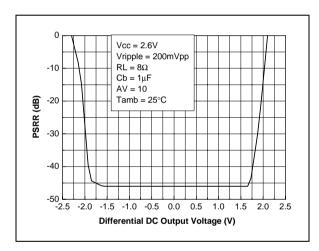


Figure 22: Output Power vs Power Supply Voltage

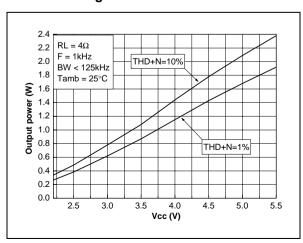


Figure 23: Power Supply Rejection Ratio (PSRR) vs DC Output Voltage

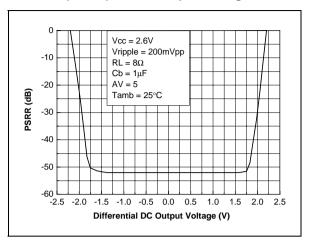


Figure 24: Power Supply Rejection Ratio (PSRR) at F=217Hz vs Bypass Capacitor

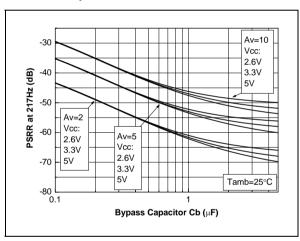


Figure 25: Output Power vs Power Supply Voltage

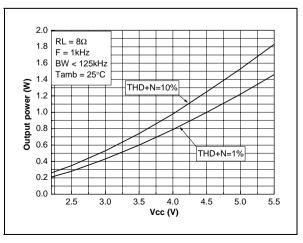


Figure 26: Output Power vs Power Supply Voltage

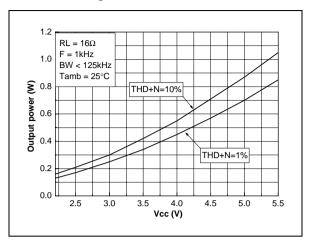


Figure 27: Output Power vs Load Resistor

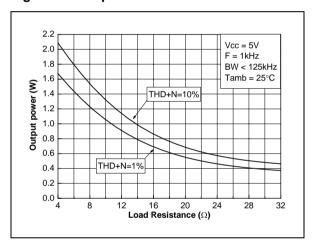


Figure 28: Output Power vs Load Resistor

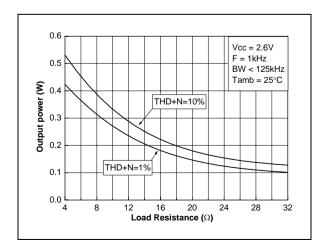


Figure 29: Output Power vs Power Supply Voltage

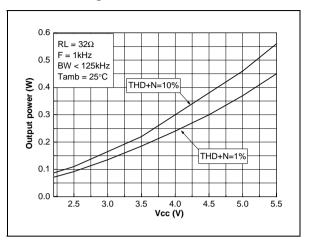


Figure 30: Output Power vs Load Resistor

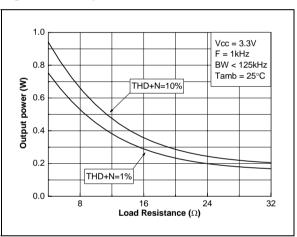


Figure 31: Power Dissipation vs Pout

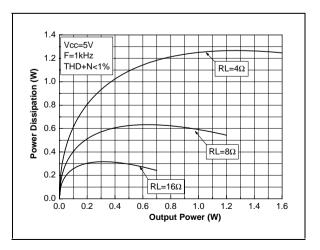


Figure 32: Power Dissipation vs Pout

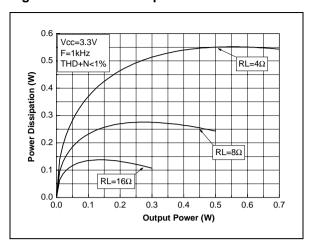


Figure 33: Power Derating Curves

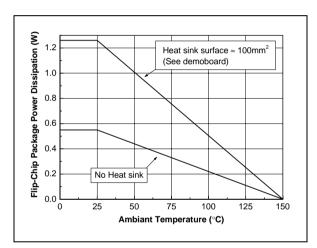


Figure 34: Clipping Voltage vs Power Supply Voltage and Load Resistor

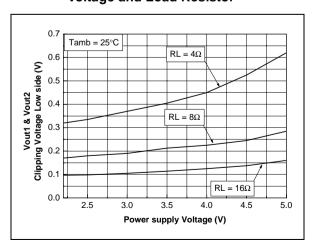


Figure 35: Power Dissipation vs Pout

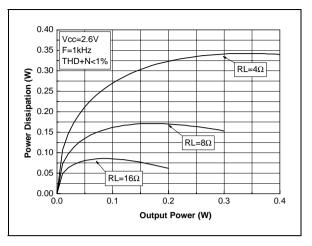


Figure 36: Clipping Voltage vs Power Supply Voltage and Load Resistor

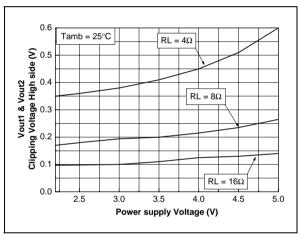


Figure 37: Current Consumption vs Power Supply Voltage

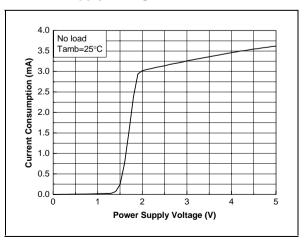


Figure 38: Current Consumption vs Standby Voltage @ Vcc = 5V

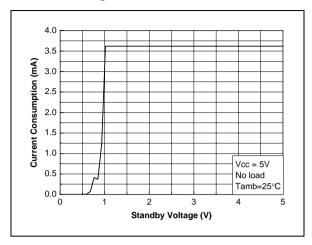


Figure 39: Current Consumption vs Standby Voltage @ Vcc = 2.6V

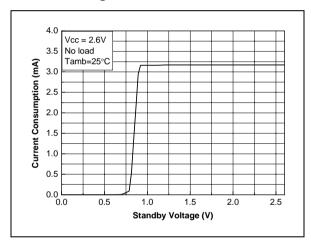


Figure 40: THD + N vs Output Power

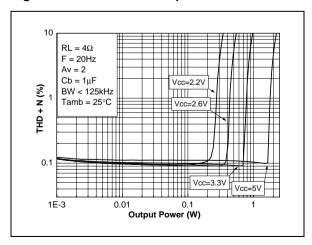


Figure 41: Current Consumption vs Standby Voltage @ Vcc = 3.3V

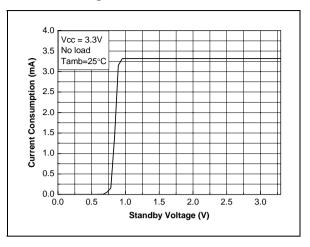


Figure 42: Current Consumption vs Standby Voltage @ Vcc = 2.2V

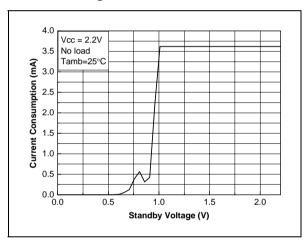


Figure 43: THD + N vs Output Power

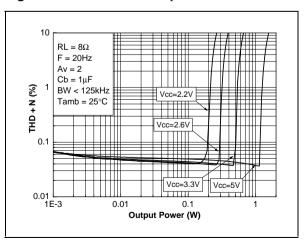


Figure 44: THD + N vs Output Power

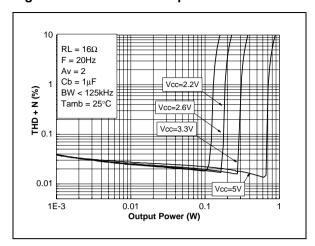


Figure 45: THD + N vs Output Power

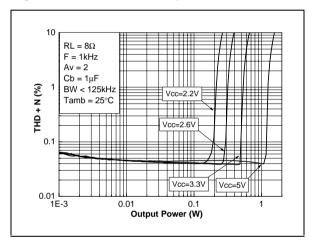


Figure 46: THD + N vs Output Power

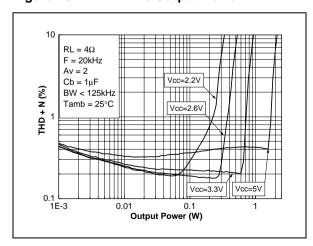


Figure 47: THD + N vs Output Power

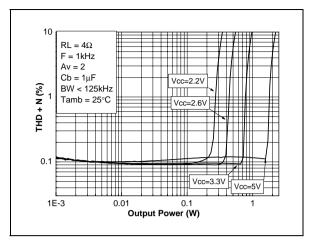


Figure 48: THD + N vs Output Power

Figure 49: THD + N vs Output Power

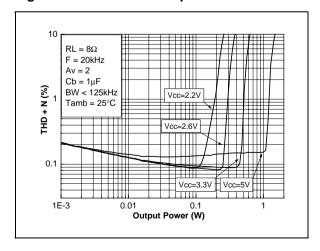


Figure 50: THD + N vs Output Power

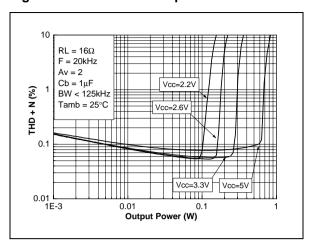


Figure 51: THD + N vs Frequency

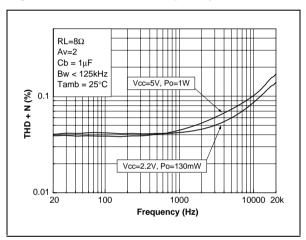


Figure 52: Signal to Noise Ratio vs Power
Supply with Unweighted Filter (20Hz to 20kHz)

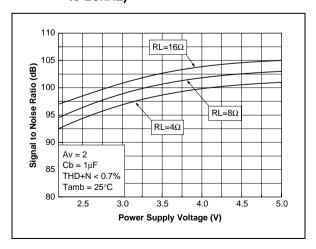


Figure 53: THD + N vs Frequency

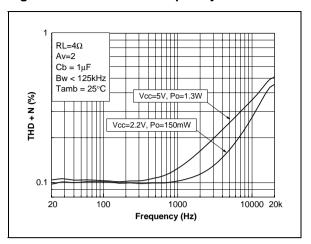


Figure 54: THD + N vs Frequency

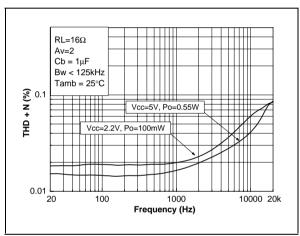


Figure 55: Signal to Noise Ratio vs Power
Supply with Unweighted Filter (20Hz to 20kHz)

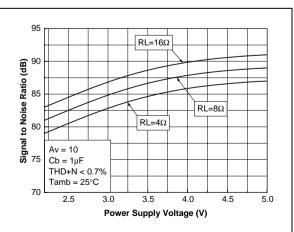


Figure 56: Signal to Noise Ratio vs Power Supply with A Weighted Filter

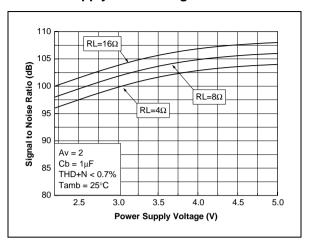


Figure 57: Output Noise Voltage device ON

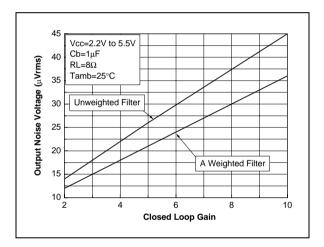


Figure 58: Signal to Noise Ratio vs Power Supply with A Weighted Filter

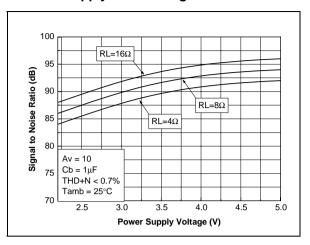
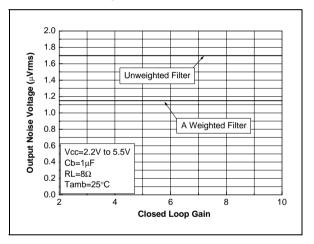



Figure 59: Output Noise Voltage device in Standby

3 Application Information

3.1 BTL configuration principle

The TS4990 is a monolithic power amplifier with a BTL output type. BTL (Bridge Tied Load) means that each end of the load is connected to two single-ended output amplifiers. Thus, we have:

Single-ended output
$$1 = V_{out1} = V_{out} (V)$$

Single ended output
$$2 = V_{out2} = -V_{out}(V)$$

and
$$V_{out1} - V_{out2} = 2V_{out}(V)$$

The output power is:

$$P_{out} = \frac{(2V_{outRMS})^2}{R_L}$$

For the same power supply voltage, the output power in BTL configuration is four times higher than the output power in single ended configuration.

3.2 Gain In typical application schematic

The typical application schematic is shown in page 1.

In the flat region (no C_{in} effect), the output voltage of the first stage is (in Volts):

$$V_{out1} = (-V_{in}) - \frac{R_{feed}}{R_{in}}$$

For the second stage: $V_{out2} = -V_{out1} (V)$

The differential output voltage is (in Volts):

$$V_{out2} - V_{out1} = 2V_{in} - \frac{R_{feed}}{R_{in}}$$

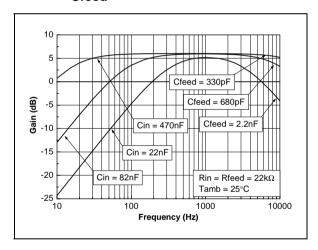
The differential gain named gain (G_v) for more convenient usage is:

$$G_v = \frac{V_{out2} - V_{out1}}{V_{in}} - \frac{2}{R_{feed}}$$

 V_{out2} is in phase with V_{in} and V_{out1} is phased 180° with V_{in} . This means that the positive terminal of the loudspeaker should be connected to V_{out2} and the negative to V_{out1} .

3.3 Low and high frequency response

In the low frequency region, C_{in} starts to have an effect. C_{in} forms with R_{in} a high-pass filter with a - 3dB cut-off frequency. F_{CL} is in Hz.


$$F_{CL} = \frac{1}{2\pi R_{in}C_{in}}$$

In the high frequency region, you can limit the bandwidth by adding a capacitor (C_{feed}) in parallel with R_{feed} . It forms a low-pass filter with a -3dB cut-off frequency. F_{CH} is in Hz.

$$F_{CH} = \frac{1}{2\pi R_{feed} C_{feed}}$$

The following graph shows an example of C_{in} and C_{feed} influence.

Figure 60: Frequency response gain vs Cin, & Cfeed

3.4 Power dissipation and efficiency

Hypotheses:

- Load voltage and current are sinusoidal (V_{out} and I_{out})
- Supply voltage is a pure DC source (V_{cc})

Regarding the load we have:

$$V_{out} = V_{PEAK} \sin \omega t (V)$$

and

$$I_{out} = \frac{V_{out}}{RI}$$
 (A)

and

$$P_{out} = \frac{V_{PEAK}^2}{2R_I} (W)$$

Therefore, the average current delivered by the supply voltage is:

$$ICC_{AVG} = 2 \frac{VPEAK}{\pi RL} (A)$$

The power delivered by the supply voltage is:

Psupply =
$$Vcc Icc_{AVG}(W)$$

Then, the **power dissipated by each amplifier** is $P_{diss} = P_{supply} - P_{out}(W)$

$$P_{diss} = \frac{2\sqrt{2}V_{CC}}{\pi\sqrt{R_1}} - \sqrt{P_{\bar{o}\bar{u}\bar{t}}} - P_{\bar{o}\bar{u}\bar{t}} - P_{\bar{u}\bar{t}} - P_{\bar{u}\bar{t}} - P_{\bar{u}\bar{t}} - P_$$

and the maximum value is obtained when:

$$\frac{\partial P diss}{\partial P_{out}} = 0$$

and its value is:

Pdiss max =
$$\frac{2 \text{Vcc}^2}{\pi^2 R_L}$$
 (W)

Note: This maximum value is only dependent on power supply voltage and load values.

The **efficiency** is the ratio between the output power and the power supply

$$\eta = \frac{P_{out}}{P_{supply}} = \frac{\pi V PEAK}{4 VCC}$$

The maximum theoretical value is reached when Vpeak = Vcc, so

$$\frac{\pi}{4} = 78.5\%$$

3.5 Decoupling of the circuit

Two capacitors are needed to correctly bypass the TS4990. A power supply bypass capacitor C_S and a bias voltage bypass capacitor C_B .

 C_S has particular influence on the THD+N in the high frequency region (above 7kHz) and an indirect influence on power supply disturbances. With a value for C_S of 1 μ F, you can expect similar THD+N performances to those shown in the datasheet.

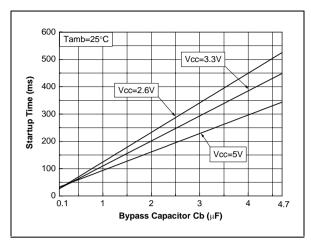
In the high frequency region, if C_S is lower than $1\mu F$, it increases THD+N and disturbances on the power supply rail are less filtered.

On the other hand, if C_S is higher than $1\mu F$, those disturbances on the power supply rail are more filtered

C_b has an influence on THD+N at lower frequencies, but its function is critical to the final result of PSRR (with input grounded and in the lower frequency region).

If C_b is lower than $1\mu F$, THD+N increases at lower frequencies and PSRR worsens.

If C_b is higher than $1\mu F$, the benefit on THD+N at lower frequencies is small, but the benefit to PSRR is substantial.


Note that C_{in} has a non-negligible effect on PSRR at lower frequencies. The lower the value of C_{in}, the higher the PSRR.

3.6 Wake-up time: Twu

When the standby is released to put the device ON, the bypass capacitor C_b will not be charged immediately. As C_b is directly linked to the bias of the amplifier, the bias will not work properly until the C_b voltage is correct. The time to reach this voltage is called wake-up time or T_{WU} and specified in electrical characteristics table with C_b =1µF.

If C_b has a value other than $1\mu F$, please refer to the graph in Figure 60 to establish the wake-up time value.

Figure 61: Typical wake-up time vs. C_b

Due to process tolerances, the maximum value of wake-up time could be establish by the graph in Figure 61:

Figure 62: Maximum wake-up time vs. Ch

Note: Bypass capacitor C_b as also a tolerance of typically +/-20%. To calculate the wake-up time with this tolerance, refer to the previous graph (considering for example for C_b =1 μ F in the range of 0.8μ F \leq 1 μ F \leq 1.2 μ F).

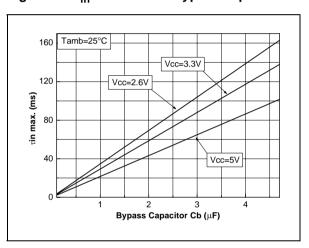
3.7 Shutdown time

When the standby command is set, the time required to put the two output stages in high impedance and the internal circuitry in shutdown mode is a few microseconds.

Note: In shutdown mode, Bypass pin and Vin- pin are short-circuited to ground by internal switches. This allows a quick discharge of $C_{\rm b}$ and $C_{\rm in}$ capacitors.

3.8 Pop performance

Pop performance is intimately linked with the size of the input capacitor C_{in} and the bias voltage bypass capacitor C_{h} .


The size of C_{in} is dependent on the lower cut-off frequency and PSRR values requested. The size of C_b is dependent on THD+N and PSRR values requested at lower frequencies.

Moreover, C_b determines the speed with which the amplifier turns ON. In order to reach near zero pop and click, the equivalent input constant time,

$$\tau_{in} = (R_{in} + 2k\Omega)xC_{in}$$
 (s) with $R_{in} \ge 5k\Omega$

must not reach the τ_{in} maximum value as indicated in the graph below.

Figure 63: τ_{in} max. versus bypass capacitor

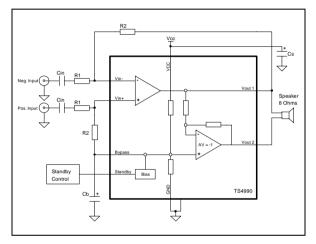
By following previous rules, the TS4990 can reach near zero pop and click even with high gains such as 20 dB.

Example:

With $R_{in}=22~k\Omega$ and a 20 Hz, -3 db low cut-off frequency, C_{in} =361 nF. So, C_{in} =390 nF with standard value which gives a lower cut-off frequency equal to 18.5 Hz. In this case, $(R_{in}+2~k\Omega)$ x $C_{in}=9.36$ ms. When referring to the previous graph, if $C_{b}=1~\mu\text{F}$ and Vcc=5~V, we read 20 ms max. This value is twice as high as our current value, thus we can state that pop and click will be reduced to its lowest value.

Minimizing both C_{in} and the gain benefits both the pop phenomena, and the cost and size of the application.

3.9 Application: differential inputs btl power amplifier


The schematic in Figure 63 shows how to design the TS4990 to work in a differential input mode.

The gain of the amplifier is:

$$G_{VDIFF} = 2 \frac{R_2}{R_1}$$

In order to reach the optimal performance of the differential function, R_1 and R_2 should be matched at 1% max.

Figure 64: Differential input amplifier configuration

The input capacitor C_{IN} could be calculated by the

following formula using the -3dB lower frequency required. (F_I is the lower frequency required)

$$C_{IN} \approx \frac{1}{2\pi R_1 F_L} (F)$$

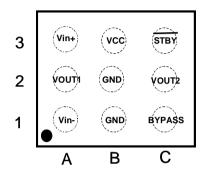
Note: This formula is true only if:

$$F_{CB} = \frac{1}{2 \pi (R_1 + R_2) C_B} (Hz)$$

is 5 times lower than F_I.

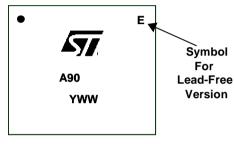
The following bill of material is an example of a differential amplifier with a gain of 2 and a -3dB lower cut-off frequency of about 80Hz.

Components:

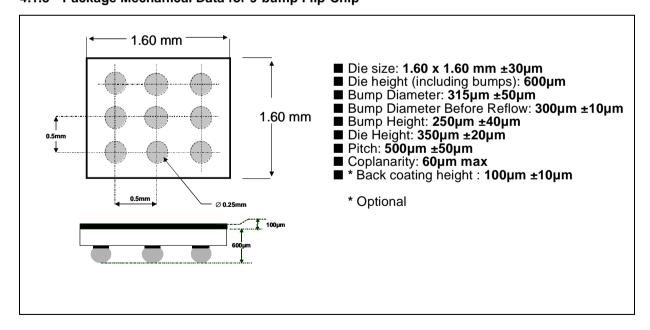

Designator	Part Type
R1	20k / 1%
R2	20k / 1%
C _{in}	100nF
C _b =C _S	1µF
U1	TS4990

4 Package MechanicaL Data

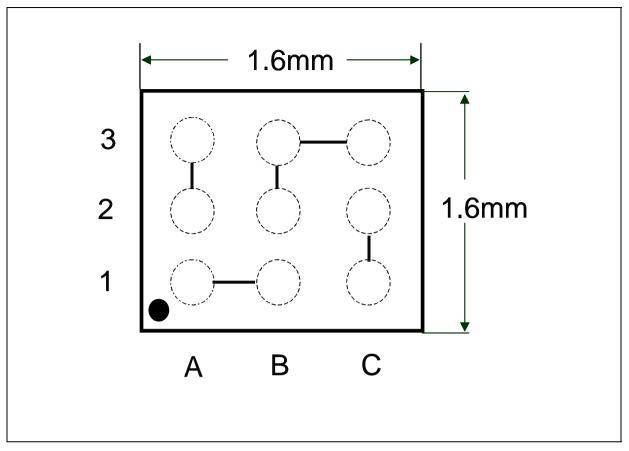
4.1 TS4990IJT Pinout and Package Mechanical Data



4.1.1 Pinout (top view)


Balls are underneath

4.1.2 Marking (top view)

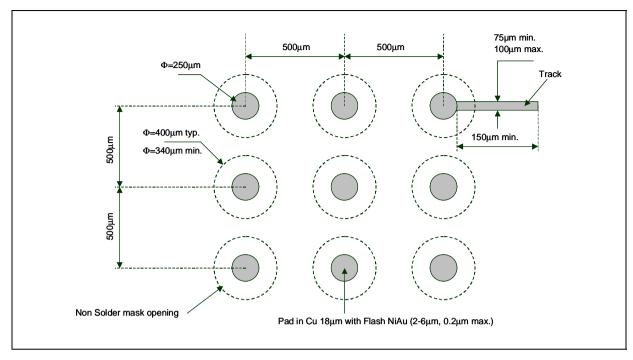


- ST Logo
- Part number: A90
- Three digits Datecode: YWW■ E symbol for lead-free only
- The dot is for marking pin A1

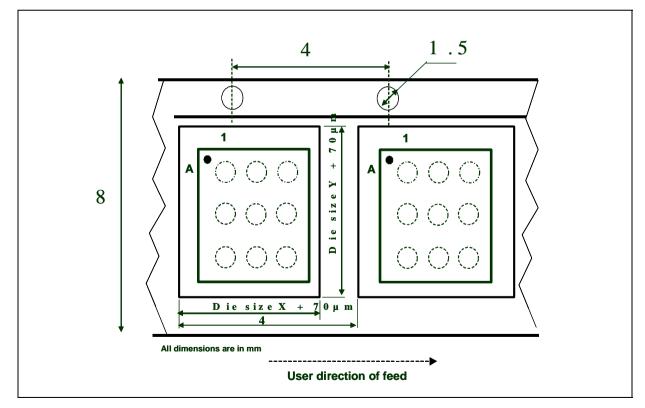
4.1.3 Package Mechanical Data for 9-bump Flip-Chip

4.1.4 Daisy Chain Mechanical Data

Remarks


The daisy chain sample features two by two pin connections. The schematic above illustrates the way pins connect to each other. This sample is used to test continuity on your board. Your PCB needs to be designed the opposite way, so that pins that are unconnected in the daisy chain sample, are connected on your PCB. If you do this, by simply connecting a Ohmmeter between pin A1 and pin A3, the soldering process continuity can be tested.

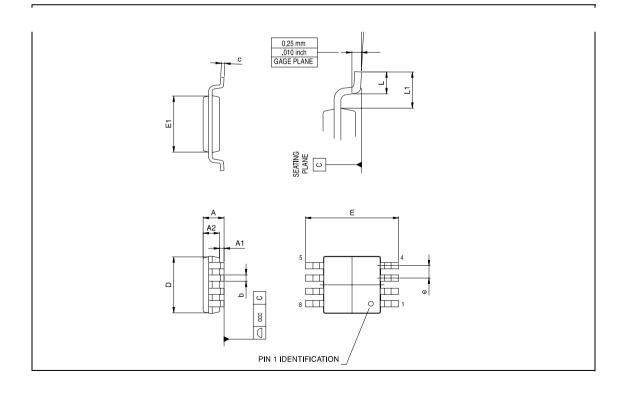
Order code


Part Number	Temperature Range	Package	Marking
Part Number	Temperature Namye	J	Walking
TSDC05IJT TSDC05EIJT ¹	-40, +85°C	•	DC3 DC3

1) Lead free Daisy Chain part number

4.1.5 TS4990 Footprint Recommendations

4.1.6 Tape & Reel Specification (top view)

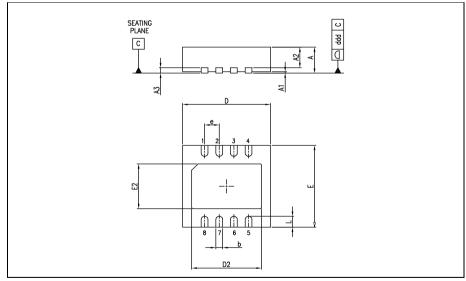

Device orientation

The devices are oriented in the carrier pocket with pin number A1 adjacent to the sprocket holes.

4.2 Mini SO8 Package Mechanical Data

miniSO-8 MECHANICAI	ΠΔΤΔ
---------------------	------

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.1			0.043
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.78	0.86	0.94	0.031	0.031	0.037
b	0.25	0.33	0.40	0.010	0.13	0.013
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
E	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	.0114	0.118	0.122
е		0.65			0.026	
К	0°		6°	0°		6°
L	0.40	0.55	0.70	0.016	0.022	0.028
L1			0.10			0.004



4.3 DFN8 Package Mechanical Data

DFN8 EXPOSED PAD (E2 X D2) IS CONNECTED TO PIN NUMBER 7.
FOR ENHANCED THERMAL PERFORMANCE, THE EXPOSED PAD MUST BE SOLDERED TO A
COPPER AREA ON THE PCB, ACTING AS HEATSINK. THIS COPPER AREA CAN BE ELECTRICALY
CONNECTED TO PIN7 OR LEFT FLOATING.

DFN8 (3x3) MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
Α	0.80	0.90	1.00	31.5	35.4	39.4
A1		0.02	0.05		0.8	2.0
A2		0.70			27.6	
А3		0.20			7.9	
b	0.18	0.23	0.30	7.1	9.1	11.8
D	2.875	3.00	3.125		118.1	
D2	2.23	2.38	2.48	87.8	93.7	97.7
E	2.875	3.00	3.125		118.1	
E2	1.49	1.64	1.74	58.7	64.6	68.5
е		0.50			19.7	
L	0.30	0.40	0.50	11.8	15.7	19.7

Revision History TS4990

5 Revision History

Date	Revision	Description of Changes
July 2002	1	First Release
September 2003	2	Update Mechanical Data
October 2004	3	Order code for Back coating on Flip chip

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

