Istruzioni di ingresso e uscita dei dati

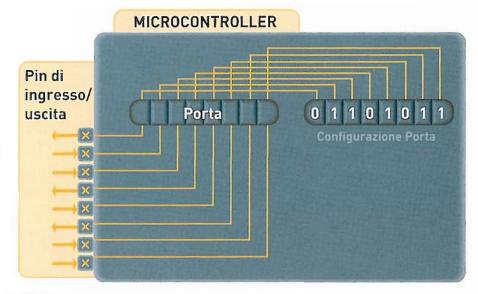
ra che conosciamo alcune delle istruzioni di gestione dei dati in assembler proviamo a gestire le porte di ingresso/uscita e non solo i registri interni. In base alle applicazioni, questi dati saranno digitali o analogici; in questo capitolo ci occuperemo soprattutto dei dati analogici.

Ingresso	e uscita
	n assembler

I dispositivi da collegare al microcontroller sono gli stessi che si utilizzano nella programmazione con il LetPicBasic, anche se per alcuni di essi, come la tastiera o il display LCD, non esistono istruzioni specifiche. In questi casi, quindi, sarà necessario conoscere molto bene il comportamento del dispositivo per poter programmare una routine di funzionamento partendo da istruzioni semplici.

Le porte di ingresso/uscita

Il concetto di porta di ingresso/uscita non varia rispetto al LetPicBasic, pertanto è necessario configurare ognuno dei pin come ingresso o uscita prima di utilizzarlo. In questo caso, tuttavia, la conoscenza deve andare oltre al semplice nome assegnato alla porta, dato che in assembler una porta di


PORTA	EQU	05	; Definizione della Porta A
PORTA A	EQU	05	; Altra definizione corretta

Modo di definire i registri.

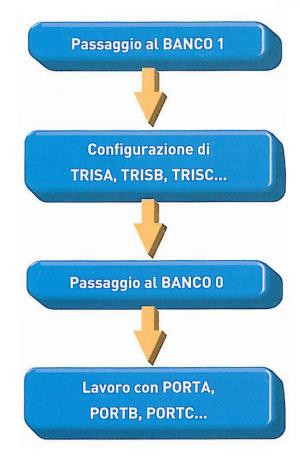
ingresso/uscita non è altro che un registro, e viene gestita con lo stesso tipo di istruzioni; guindi dobbiamo conoscere la sua posizione all'interno della memoria dei dati e trattarla di consequenza. Se durante questa fase della programmazione commettiamo degli errori, non verremo avvisati con nessun tipo di messaggio. Le porte di ingresso/uscita nel PIC sono chiamate PORTA, PORTB, PORTC, ecc., occupano in questo caso gli indirizzi 05, 06 e 07 della memoria dei dati. Prima di utilizzarle devono

con la direttiva EQU. Come si può vedere nella figura, che la Porta A venga chiamata PORTA o in qualsiasi altro modo è indifferente, ciò che conta è definire bene la sua posizione nella memoria. Come nel LetPicBasic, inoltre, per ognuno dei pin della porta bisogna specificare se diventerà un ingresso o un'uscita, e questo si fa impostando il valore dei bit, nei rispettivi registri di configurazione delle porte, a 1 o a 0 rispettivamente, questi registri occupano gli indirizzi 05,

essere definite, cosa che si fa

Definizione delle linee come ingresso/uscita.

Assembler per PIC


06 e 07 della memoria dei dati, però nel banco 1. Questi registri sono chiamati TRISA, TRISB, TRISC, ecc. e la definizione dei loro indirizzi si realizza allo stesso modo di quella delle porte. Tuttavia dato che si trovano sul banco 1, e all'inizio del programma si parte dal banco 0, prima di utilizzare le porte bisognerà cambiare sul banco 1, configurare i registri e tornare al banco 0.

Il cambio di banco si realizza ponendo differenti valori nei bit RPO (bit 5) e RP1 (bit 6) del registro STATUS; in questo modo ci sono quattro possibilità in codice binario che passate in decimale, corrispondono ai banchi 0, 1, 2 e 3. Pertanto, se vogliamo cambiare fra i banchi 0 e 1 basterà modificare il bit RPO.

Impostazione a zero o a uno di un bit di un registro

Come abbiamo detto, le porte di ingresso/uscita sono registri, che seppure un po' speciali devono essere gestiti come tutti gli altri. A questo punto, l'impostazione a 0 oppure a 1 dei bit delle porte si farà nello stesso modo che per gli altri.

Per lavorare con queste porte, quindi, bisogna impostare i valori nelle porte stesse, nei loro registri di configurazione e nel bit RPO del registro STATUS e tutto si può fare nella medesima forma. Per ognuno di essi bisognerà cambiare il nome del registro e il numero del bit (da 0 a 7) che si vuole modificare. Se vogliamo che il valore impostato sulle linee

Passi per poter lavorare con le porte di ingresso/uscita.

RP1	RP0	BANCO
00	0	
0	1	1
1	0	2
1	1	3

Valore dei bit per il cambio di banco.

delle porte arrivi alle periferiche corrispondenti, dovremo definire queste linee come uscite.

Lavoro con i dati di una porta completa

Anche se il lavoro con i singoli bit permette di controllare il valore dei registri al livello più basso, ci sono casi in cui è molto utile poter lavorare con tutti i dati di un registro allo stesso tempo, per esempio per definire una porta di ingresso/uscita o anche per assegnare a essa dei valori. Questo si fa con le istruzioni di movimento dei dati. Esistono tre modalità di

