
 1

PLC / Embedded computer
TM

User Manual
Version 3.1

“Everything for Embedded Control”

Comfile Technology Inc.

www.cubloc.com

Copyright 1996,2008 Comfile Technology

 2

Blank Page

 3

SOUT
SIN
ATN
VSS

SS_P0
(Input_only)SCK_P1

MOSI_P2
MISO_P3

P4
PWM0_P5
PWM1_P6
PWM2_P7

(CUNET)SCL_P8
(CUNET)SDA_P9

P10
P11

TX1
RX1

AVDD
N/C

ADC0_P24
ADC1_P25
ADC2_P26
ADC3_P27

P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19_PWM3
P20_PWM4_INT0
P21_PWM5_INT1
P22_INT2
P23_INT3
P15_HCNT1
P14_HCNT0
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31_ADC7
P30_ADC6
P29_ADC5
P28_ADC4
P32
P33
P34
P35
P36
P37
P38
P39

SOUT
SIN
ATN
VSS

SS_ADC0_P0
(Input only)SCK_ADC1_P1

MOSI_ADC2_P2
MISO_ADC3_P3

ADC4_P4
PWM0_ADC5_P5
PWM1_ADC6_P6
PWM2_ADC7_P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN (5.5V~12Vinput)
VSS
RES
VDD
P15_HCNT1
P14_HCNT0
P13
P12
P11_TX1
P10_RX1
P9_SDA(CUNET)
P8_SCL(CUNET)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
Sin
Atn
Vss

SS_P0
Input only) SCK_P1

MOSI_P2
MISO_P3

P4
PWM0_P5
PWM1_P6
PWM2_P7

P56
P57
P58
P59
P60
P61
P62
P63

(

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P8 ADC0
P9 ADC1
P10 ADC2
P11_ADC3
P12_ADC4
P13_ADC5
P14_ADC6
P15_ADC7
P64
P65
P66
P67
P68
P69
P70
P71

_
_
_

95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

P
W

M
4

_P
90

P
W

M
5

_
P

91
P

20
P

21
 H

C
N

T0
_

P
22

H
C

N
T1

_
P

23
P

76
P

77
P

78
P

79
P

84
P

85
P

86
P

87

81 82 83 84 85 86 87 88 89 90 91 92 93 94

N
/C

P
89

P

W
M

3
P

16

 S
C

L
C

U
N

E
T)

P
17

 S
D

A
(C

U
N

E
T

)
P

18

 IN
T

3
P

19
 I

N
T4

P
72

P
73

P
74

P
75

P
80

P
81

P
82

P
83

_ _
(

_ _ _

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TX1
RX1

AVdd
Vdd
P24
P25
P26
P27
P28
P29
P30
P31
P40
P41
P42
P43
P44
P45
P46
P47

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTX1
TtlRX1
AVref
Vss
P32
P33
P34
P35
P36
P37
P38
P39
P48
P49
P50
P51
P52
P53
P54
P55

CB380
CB280

CUBLOC
Core Module
Pinout

CB220
CB320

CB290

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
Sin
Atn
Vss

SS_P0
SCK P1

MOSI P2
MISO P3

P4
PWM0_ P5
PWM1_ P6
PWM2_ P7

RX2_ P8
TX2_ P9

P10
PWM6_ P11
PWM7_ P12
PWM8_ P13

P14
P15

_
_
_

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P16 ADC0
P17 ADC1
P18 ADC2
P19 ADC3
P20 ADC4
P21 ADC5
P22 ADC6
P23 ADC7
P24
P25
P26
P27 PWM3
P28 PWM4 INT0
P29 PWM5_INT 1
P30 INT2
P31 INT3

_
_
_
_
_
_
_
_

_
_ _
_
_
_

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TXE
RXE

AVdd
Vdd

ADC8 P32
ADC9 P33

ADC10 P34
ADC11 P35
ADC12 P36
ADC13 P37
ADC14 P38
ADC15 P39
HCNT1 P47
HCNT0 P46

P45
P44

TX1 P43
RX1 P42

CUNET)SDA P41
(CUNET)SCL P40

_
_
_
_
_
_
_
_
_
_

_
_

(_
_

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTXE
TtlRXE
AVref
Vss
P48
P49
P50
P51 PWM9
P52 PWM10
P53 PWM11
P54
P55
P63
P62
P61
P60
P59
P58
P57 TX3
P56 RX3

_
_
_

_
_

CB405
Input
Only

18 19 20
P18
P19_PWM3
P20_PWM4_INT0
P21_PWM5_INT1
P22_INT2
P23_INT3

SPARE I/O

23 22 21

 4

Warranty

Comfile Technology provides a one year warranty on its products against defects in

materials and workmanship. If you discover a defect, Comfile Technology will, at its

option, repair, replace, or refund the purchase price. Simply return the product with a

description of the problem and a copy of your invoice (if you do not have your invoice,

please include your name and telephone number). This warranty does not apply if the

product has been modified or damaged by accident, abuse, or misuse.

30-Day Money-Back Guarantee

If, within 30 days of having received your product, you find that it does not suit your

needs, you may return it for a refund. Comfile Technology will refund the purchase

price of the product, excluding shipping/handling costs. This does not apply if the

product has been altered or damaged.

Copyright & Trademarks

Copyright © 2006 by Comfile Technology Inc. All rights reserved. CUBLOC™ is a

registered trademark of Comfile Technology Inc. WINDOWS is a trademark of

Microsoft Corporation. XPORT is trademark of Lantronix inc. Other trademarks are of

their respective companies.

Notice

This manual may be changed or updated without notice. Comfile Technology Inc. is not

responsible for any actions taken outside the explanation of this manual. This product

is protected by patents across the world. You may not change, copy, reproduce, or

translate without the consent of Comfile Technology Inc.

Disclaimer of Liability

Comfile Technology Inc. is not responsible for special, incidental, or consequential

damages resulting from any breach of warranty, or under any legal theory, including

lost profits, downtime, goodwill, damage to or replacement of equipment or property,

and costs or recovering, reprogramming, or reproducing any data stored in or use with

Comfile Technology products.

 5

NEW in CublocStudio v.2.4.F (and above)

You can easily upgrade to CUBLOC STUDIO V2.4.X to use the new features
of CUBLOC and CUTOUCH.

CUBLOC Studio V2.4.F (and above) supports new command as follows;

STEPACCEL Channel, Port, FreqBASE, FreqTOP, FreqACCEL, Qty
 Channel : StepPulse Channel (Stepaccel supports only 0)
 Port : Output Port
 FreqBASE : The starting stepper frequency (Up to FreqTOP)
 FreqTOP : The frequency after acceleration is finished (Up to 3.3KHz)
 FreqACCEL : The acceleration in steps per second
 Qty : # of pulses to output (up to 2147483647)

Frequncy Base

Frequncy Top

Frequncy Accel

Number of Pulses

Output a set of number of pulses at a set frequency (up to 3.3kHz) with
acceleration.

 6

NEW CUBLOC Module – CB320, CB380

The new CUBLOC Module CB320, CB380 have more program and data
memory, plus two more serial ports than older CUBLOC modules.

Core Module CB380 Core Moduel CB320
Same as CB280 except;
200KB Program memory,
6KB Data memory.

Same as CB220 except;
200KB Program memory,
6KB Data memory.

To use the CUBLOC module CB320, CB380, you need to use CublocStudio
v.2.5.B and above.

Feature

CB220

CB280

CB290

CB405

CB320

CB380

Program Memory 80KB 80KB 80KB 200KB 200KB 200KB
Data Memory BASIC 2KB

LADDER 1KB
BASIC 2KB
LADDER 1KB

BASIC 24KB
LADDER 4KB

BASIC 51KB
LADDER 4KB
HEAP 55KB

BASIC 6KB
LADDER 1KB

BASIC 6KB
LADDER 1KB

Battery
Backup

N/A N/A Available Available N/A N/A

EEPROM 4KB 4KB 4KB 4KB 4KB 4KB
I/O ports 16 + 6 49 + 2 91 + 2 64 + 2 16 + 6 49 + 2
Package 24 pin DIP 64 pin

Module
108 pin
Module

80 pin Module 24 pin DIP 64 pin Module

ADC 8 Channel 8 Channel 8 Channel 16 Channel 8 Channel 8 Channel
PWM 3 Channel 6 Channel 6 Channel 12 Channel 3 Channel 6 Channel
RS232 2 Channel 2 Channel 2 Channel 4 Channel 2 Channel 2 Channel
External Interrupt None 4 4 4 4 4
HIGH COUNT
INPUT

2 Channel 2 Channel 2 Channel 2 Channel 2 Channel 2 Channel

RTC None None Yes None None None

 7

Preface

Comfile Technology has been developing PLC and BASIC controllers since
1997. Based on our past knowledge of this field, we are providing a unique
product that is powerful, flexible, and has the best features of both BASIC
controllers and PLCs (Programmable Logic Controllers).

As a result of our experiences developing and selling TinyPLC and PicBASIC
modules (older chip based PLCs and BASIC controllers), we continue to
work hard on new and improved products every year. CUBLOC is able to
adapt to the user’s programming strengths by providing side-by-side BASIC
and LADDER processing. But unlike other products, you can choose to use
CUBLOC as a BASIC controller only, or as a PLC controller only.

Ladder Logic, which is a traditional way of programming PLCs for its
outstanding reliability and straightforward design, cannot easily cope with
graphic interfaces and other functions that require complex code. In these
situations, the BASIC programming approach greatly simplifies the work
required to implement many complex features.

CUBLOC is able to process BASIC and Ladder Logic simultaneously through
on-chip multitasking. By sharing data in common memory, users are able
to integrate both BASIC and LADDER efficiently and take advantage of both
programming approaches.

CUBLOC was created for beginners and advanced users alike. Its simplified
commands and programming tools are an easy way to started with
microcontrollers, yet the device is powerful enough to handle serious
automation applications with minimal time spent in the programming phase.

With our Plug-N-Play displays, development boards, and relay boards, you
will be able to put an application together in matter or hours, instead of
months.

Comfile Technology, Inc.

 8

Notice

The Start Kit or Industrial Kit you receive comes with the latest version of
Cubloc Studio at the time the CD was created.

z Please be aware that the software may be upgraded often.
z Please check www.cubloc.com to download the latest version of

CublocStudio.
z Please run Setup->Firmware Download after installing a new version of

CublocStudio as the newest firmware is included with the upgraded
software.

z Please check www.comfiletech.com often for latest Manual.
z Please make sure to insert the CUBLOC module correctly as inserting it

improperly can cause damage to the chip.
z Please be aware that our 1 Year Warranty only covers defective items.

 9

Table of Contents

CHAPTER 1: GETTING STARTED...19

What is CUBLOC?..20
CUBLOC Specifications...21
Ladder Logic and BASIC...25
Multi-tasking of Ladder Logic and BASIC..27
Advantages of an On-Chip PLC/Embedded Computer......................29
Development Environment ...31
Download and Monitoring through the Internet32
Hints for Traditional PLC Users..33
Hints for Microcontroller Users ..34
CUBLOC’s Internal Structure ..35
CUBLOC Peripherals ..36

CHAPTER 2: HARDWARE ..39

Hardware Features..40
CB220 / CB320...41
Supplying power to the CB220 / CB320...43
CB280 / CB380...44
How to supply power to the CB280 / CB380...................................46
CB290..47
CB405..51
How to connect a battery to CB290/CB40554
Dimensions...55
CUBLOC Chipset : CB280CS...57

CHAPTER 3: CUBLOC STUDIO...61

CUBLOC STUDIO Basics...62
Creating BASIC Code...64
Debugging..65
Menus..66

CHAPTER 4: CUBLOC BASIC LANGUAGE ...69

CUBLOC BASIC Features..70
Simple BASIC program ..72
Sub and Function ..73
Variables ..79
String ..81
About Variable Memory Space ..85

 10

Arrays..86
Bits and Bytes modifiers...87
Constants...90
Constant Arrays... ...91
Operators...93
Expressing Numbers..96
The BASIC Preprocessor ..97
Conditional ...99
To use LADDER ONLY ..102
To use BASIC ONLY...102
Interrupts...103
More about Interrupts… ...104
Pointers using Peek, Poke, and Memadr.......................................105
Sharing Data ..106

CHAPTER 5: CUBLOC BASIC FUNCTIONS ...109

Math Functions ...110
Type Conversion ...112
String Functions..115

CHAPTER 6: CUBLOC BASIC STATEMENTS & LIBRARY...................................123

Adin() ...124
Alias ..126
Bcd2bin..127
Bclr..128
Beep..129
Bfree() ..130
Bin2bcd..131
Blen() ...132
Bytein()...133
Byteout..134
CheckBf()..135
Compare ..136
Count() ...137
Countreset ...139
Dcd..140
Debug..141
Decr ..144
Delay...145
Do...Loop ...146
Dtzero..148
EAdin() ...149

 11

Eeread()..151
Eewrite ..152
Ekeypad...153
For...Next...154
Freepin ..156
Freqout ..157
Get() ..159
Geta ..160
Geta2 ..161
Getcrc..162
Getstr()...163
Getstr2()...164
Gosub...Return ...165
Goto ..165
Hread() ...167
Hwrite..167
Heapclear...168
Heap() ..168
Heapw ...168
High...170
I2Cstart ...171
I2Cstop..171
I2Cread() ..172
I2Creadna()...173
I2Cwrite() ...174
If...Then...Elseif…Endif ...175
In()...176
Incr ...177
Input ...178
Keyin ...179
Keyinh ...180
Keypad ..181
Ladderscan...182
Low ...183
Memadr()..184
Ncd..185
Nop ...186
On Int..187
On Ladderint Gosub...188
On Pad Gosub...190
On Recv ...191
On Timer() ...192

 12

Opencom ...193
Out..196
Output ...197
Outstat() ...198
Pause...198
Peek()...199
Poke ..199
Pulsout...200
Put ..201
Puta...202
Puta2...203
Putstr...204
Pwm ..205
Pwmoff ..206
Ramclear..207
Reset ...208
Reverse..209
Rnd()..210
Select...Case...211
Set Debug ..212
Debug Command How-to...212
Set I2c...215
Set Int ...216
Set Ladder on/off ..217
Set Modbus ..218
Set Onglobal...219
Set Onint..220
Set OnLadderint..221
Set Onpad..222
Set Onrecv ...223
Set Ontimer..224
Set Outonly ..225
Set Pad ..226
Set Rs232 ..229
Set Rs485 ..230
Set Until...232
Shiftin() ..233
Shiftout..234
Spi...235
Set Spi...235
Steppulse ...236
Stepstop ..237

 13

Stepstat()..237
Stepaccel ...238
Sys() ..241
Tadin()...242
Time()...243
Timeset..245
Udelay ...247
Usepin ...248
Utmax..249
Wait...250
WaitTx ...251

CHAPTER 7: CUBLOC DISPLAY LIBRARY ..253

Cls...257
Csron...257
Csroff...257
Locate..257
Print ..257
CLCD Module ..258
GHLCD Graphic LCD : GHB3224 Series..261
Cls...264
Clear..264
Csron...264
Csroff...264
Locate..264
Print ..265
Layer ...265
GLayer...266
Overlay ..266
Contrast...267
Light ..267
Font...268
Style..269
Cmode...270
Line ...270
Lineto ..270
Box..271
Boxclear...271
Boxfill ..271
Circle ...272
Circlefill ..272
Ellipse ..273

 14

Elfill ...273
Glocate ..274
Gprint ..274
Dprint ..275
Offset...276
Pset ...277
Color..277
Linestyle...277
Dotsize...277
Paint ..278
Arc ..278
Defchr..279
Bmp ..279
Gpush..281
Gpop ...281
Gpaste ...282
Hpush..283
Hpop..283
Hpaste ...283
Seven Segment Display: CSG...285
Csgdec...286
Csgnput ...287
Csgxput ...288
Csgdec...288
Csghex...288

CHAPTER 8: INTERFACING...289

Input/Output Circuits...290
RS232 HOWTO ...294
CuNET..296
CUBLOC STUDY BOARD Circuit Diagram......................................298
About I2C… ..300
More About I²C… (Advanced) ...304

CHAPTER 9: MODBUS..307

About MODBUS… ..308
MODBUS ASCII Master Mode..319
MODBUS ASCII Slave Mode..320
MODBUS RTU Master Mode ..321

CHAPTER 10: APPLICATION NOTES ...323

NOTE 1. Switch Input ..324

 15

NOTE 2. Keypad Input ...326
NOTE 3. Temperature Sensor ...329
NOTE 4. Sound Bytes ..334
NOTE 5. RC Servo Motor..337
NOTE 6. Digital Thermometer ..339
NOTE 7. DS1302 RTC ..340
NOTE 8. MCP3202 12 Bit A/D Conversion342
NOTE 9. Read and write to an EEPROM..344

CHAPTER 12: LADDER LOGIC ...347

LADDER Basics..348
Creating LADDER Programs..350
Editing LADDER Text ...352
Monitoring..356
Time Chart Monitoring ...357
WATCH POINT ..358
Register Expression ...363
Ladder symbols...365
Using I/Os..367
Use of Aliases ...368
Starting LADDER...369
Declare device to use...369
Using Ladder Only...370
Enable Turbo Scan Time Mode..371
Things to Remember in LADDER ...372
ladder instructions...375
LOAD,LOADN,OUT...377
NOT, AND,OR ...378
SETOUT, RSTOUT..379
DIFU, DIFD...380
MCS, MCSCLR...381
STEPSET ..383
STEPOUT..384
TON, TAON...385
TOFF, TAOFF...386
CTU ...387
CTD...387
UP/DOWN COUNTER ...388
KCTU ...389
KCTD ...389
Comparison Logic..390
Storing Words and Double Words ...391

 16

Binary, Decimal, Hexadecimal ..392
WMOV, DWMOV..393
WXCHG, DWXCHG ..394
FMOV...395
GMOV ..396
WINC, DWINC, WDEC, DWDEC...397
WADD, DWADD ..398
WSUB, DWSUB ...398
WMUL, DWMUL...399
WDIV, DWDIV ..400
WOR, DWOR...401
WXOR, DWXOR...402
WAND, DWAND...403
WROL, DWROL ...404
WROR, DWROR...405
GOTO, LABEL..406
CALLS, SBRT, RET...407
INTON..408
TND...409
Special Registers...410

CUTOUCH...413

What is CUTOUCH? ...415
CUTOUCH Specifications ..416
Hardware Requirements...417
Software Development Environment..418
CUTOUCH I/O Ports...419
Backup Battery ...422
KEEP Timer and KEEP Counter..423
Menu System Library...424
MENU Commands ...424
Menuset ...425
Menutitle ..425
Menucheck()..426
Menureverse...426
Menu()..426
Waitdraw..427
Touch Pad Input Example ..428
CUTOUCH Sample Programs ..430

APPENDIX...441

Appendix A: ASCII CODE ...442

 17

Appendix B: Note for BASIC STAMP users....................................443
Appendix D: BASIC Command Summary444

 18

 19

Chapter 1:
Getting
Started

 20

What is CUBLOC?

CUBLOC is different from the traditional PLCs that you may have
encountered. Traditional PLCs are built into cases and have hardwired
connections, but CUBLOC is an “On-Chip” PLC/Industrial Controller,
meaning you have more freedom and flexibility in the final product size and
design.

CUBLOC Modules are similar to traditional PLCs in that Ladder Logic can be
used…but the small size allows developers to design custom PCBs for any
application.

Traditional PLC CUBLOC

There are different models, each with a unique program memory size and
number of I/O ports. Please make a selection based on your product’s
requirement.

 21

CUBLOC Specifications
Processor CB220 CB280 CB290 CB405

Picture

Program
Memory

80KB 80KB 80KB 200KB

Data
Memory

2KB(BASIC)+
1KB(Ladder

Logic)

2KB(BASIC)+
1KB(Ladder

Logic)

24KB(BASIC)+
4KB(Ladder Logic)

51KB(BASIC)+4KB(Lad-
der Logic)+55KB(Heap)

EEPROM 4KB EEPROM 4KB EEPROM 4KB EEPROM 4KB EEPROM

Program
Speed

36,000 inst./sec 36,000 inst./sec 36,000 inst./sec 36,000 inst./sec

General
Purpose

I/O

16 + 6 I/O lines
(5V TTL)
(input/output
configurable)

49 I/O lines (5V
TTL)
(input/output
configurable)

91 I/O lines (5V TTL)
(33 input only + 32
output only + 26
input/output
configurable)

64 I/O lines (5V TTL)
(input/output
configurable)

Serial
Ports

2 serial ports
(Channel 0: RS2
32C 12V,
Channel 1: TTL
5V) -
Configurable
Baud rates:
2400bps to
230,400 bps

2 serial ports
(Channel 0: RS2
32C 12V,
Channel 1:
RS232C 12V &
TTL 5V) -
Configurable
Baud rates:
2400bps to
230,400 bps

2 serial ports
(Channel 0: RS232C
12V, Channel 1:
RS232C 12V & TTL 5V) -
Configurable Baud
rates: 2400bps to
230,400 bps

4 serial ports
(Channel 0: RS232C
12V, Channel 1 to 3:
RS232C TTL 5V) -
Configurable Baud rates:
2400bps to 230,400 bps

 Analog
Inputs

8 Channel 10-bit
ADCs

8 Channel 10-bit
ADCs 8 channel 10-bit ADCs 16 channel 10-bit ADCs

Analog
Outputs

- 3 Channel 16-
bit PWMs (DACs)
- Frequency:
35hz to 1.5Mhz

- 6 Channel 16-
bit PWMs (DACs)
- Frequency:
35hz to 1.5Mhz

- 6 Channel 16-bit
PWMs (DACs)
- Frequency: 35hz to
1.5Mhz

- 12 Channel 16-bit
PWMs (DACs)
- Frequency: 35hz to
1.5Mhz

External
Interrupts

4 Channels (in
Spare I/O) 4 Channels 4 Channels 4 Channels

High
Speed

Counters

2 Channel 32-bit
Counters (up to
2Mhz)

2 Channel 32-bit
Counters (up to
2Mhz)

2 Channel 32-bit
Counters (up to 2Mhz)

2 Channel 32-bit
Counters (up to 2Mhz)

Power 5 to 12V, 40mA
(ports unloaded)

5V, 40mA (ports
unloaded)

5V, 70mA (ports
unloaded)

5V, 50mA (ports
unloaded)

RTC No No Yes No

Data
Memory
Backup

None None Optional Optional

Operating
Temper-

ature
-40 °C to 120 °C -40 °C to 120 °C -40 °C to 120 °C -40 °C to 120 °C

Package 24-pin DIP
600mil 64-pin Module 108-pin Module 80-pin Module

Size

1.2"L x 0.6"W x
0.4"H

(30 x 15.3 x 11
mm)

1.4"L x 1"W x
0.4"H

(35 x 25.4 x 11
mm)

2.4"L x 1.9"W x 0.5"H
(59.4 x 47.8 x 13 mm)

2.4"L x 1.9"W x 0.5"H
(59.4 x 47.8 x 13 mm)

 22

Processor CB320 CB380

Picture

Program
Memory

200KB 200KB

Data
Memory

6KB(BASIC)+
1KB(Ladder Logic)

6KB(BASIC)+
1KB(Ladder Logic)

EEPROM 4KB EEPROM 4KB EEPROM

Program
Speed

36,000 inst./sec 36,000 inst./sec

General
Purpose

I/O

16 I/O lines (5V TTL)
(input/output configurable)
+ Spare I/O 6 (5V TTL)

49 I/O lines (5V TTL) (input/output
configurable)

Serial
Ports

2 serial ports
(Channel 0: RS232C 12V,
Channel 1: TTL 5V) -
Configurable Baud rates:
2400bps to 230,400 bps

2 serial ports (Channel 0: RS232C
12V, Channel 1: RS232C 12V &
TTL 5V) - Configurable Baud rates:
2400bps to 230,400 bps

 Analog
Inputs

8 Channel 10-bit ADCs 8 Channel 10-bit ADCs

Analog
Outputs

- 3 Channel 16-bit PWMs
(DACs) - Frequency: 35hz to
1.5Mhz

- 6 Channel 16-bit PWMs (DACs) -
Frequency: 35hz to 1.5Mhz

External
Interrupts

4 Channels (in Spare I/O) 4 Channels

High
Speed

Counters

2 Channel 32-bit Counters (up
to 2Mhz)

2 Channel 32-bit Counters (up to
2Mhz)

Power 5 to 12V, 40mA (ports
unloaded) 5V, 40mA (ports unloaded)

RTC No No

Data
Memory
Backup

None None

Operating
Temper-

ature
-40 °C to 120 °C -40 °C to 120 °C

Package 24-pin DIP 600mil 64-pin Module

Size 1.2"L x 0.6"W x 0.4"H
(30 x 15.3 x 11 mm)

1.4"L x 1"W x 0.4"H
(35 x 25.4 x 11 mm)

 23

The main advantage of CUBLOC is that it fills Ladder Logic’s weaknesses
with BASIC language. Ladder Logic is good enough to replace sequence
diagrams, but to collect data, print graphics, and process complex tasks is
asking a little bit too much. That is why we added the BASIC language.
You can now run both Ladder Logic and/or BASIC!

DIM A AS INTEGER
IF IN(0) = 0 THEN
 OUT 2,A
END IF
GOTO LAB1

LADDER LOGIC BASIC

Picture of “CUBLOC Studio” is shown above.

 24

There are other PLCs on the current market that support both LADDER and
BASIC. These PLCs do not multi-task. BASIC is part of their Ladder Logic
and does not run independently like CUBLOC or CUTOUCH. This can prove
to be costly since BASIC is not real-time oriented and can delay the Ladder
Logic scans, possible causing missed inputs or other undesired behavior.
CUBLOC covers these weaknesses through its multi-tasking features,
guaranteeing accuracy and precision of timing.

LADDER

LADDER
LADDER

BASIC
BASIC

BASIC

SINGLE TASK MULTI TASK

CUBLOC is a brand new type of industrial controller. By being able to do
things that traditional PLCs can’t, we have expanded the horizons of both
PLCs and BASIC micro-computers.

Cubloc is fully backed by many Plug-N-Play peripherals such as our CuBASE
industrial I/O Boards and Plug-N-Play Relay8 Boards. With these peripherals,
controlling DC/AC devices is easy.

With 32-bit IEEE floating point math support and MODBUS ASCII/RTU
support, the user will find that CUBLOC and CUTOUCH are among the most
versatile BASIC/PLC hybrid chips on the market today.

 25

Ladder Logic and BASIC

The biggest advantage of Ladder Logic is that all circuits are laid out in
parallel; they are all processed as fast as the ladder scantime will allow. This
allows a more parallel execution path for unrelated functions.

P0

P5

P3

P2

P6

P9

P8

A

B

As you can see above, both A and B circuits are in a waiting state, ready to
turn output On as soon as input is turned On. For example, if input P3
turned On, P9 would turn On.

In comparison, BASIC processes code in order, a type of “Sequential
Processing.”

 Dim A As Integer

 Dim B As Integer

 A = 0

Again:

 For B=0 to 10
 Debug DEC A,CR

 A = A + 10

 Next

 Goto Again

Loop

Jump

These 2 types of programming languages have been used in different fields
for a long time. Ladder Logic is used in automation controllers such as
PLCs. On the other hand, BASIC and other programming languages such
as C and Assembly have been used in PCs and MCUs.

Whether you are an experienced MCU or PLC user, you will be able to
benefit by integrating both BASIC and Ladder Logic in your designs.

 26

The biggest advantage that Ladder Logic possesses is the ability to process
input within a guaranteed slot of time. No matter how complex the circuit
becomes, Ladder Logic is always ready to output when it receives input.
This is the main reason why it’s used for machine control and other
automation fields.

Ladder Logic is more logic oriented, not a complete programming language.
To do complex processes, it has its limits. For example, to receive input
from a keypad, display to 7 Segment or LCD, and process user’s input is a
difficult task for standard Ladder Logic.

But these things are rarely a problem for programming languages such as
BASIC. BASIC is able to process floating point numbers, data
communications, and other things beyond the scope of what Ladder Logic
can do alone. Another advantage is that its language is very similar to the
English language (IF, GOTO, etc…), allowing the beginners and developers
to learn in matter of hours, instead having to deal with months of learning
curves. BASIC is a very common programming language, and many
developers may be able to start programming a CUBLOC with only a few
glances at hardware-specific commands.

 Ladder Logic Programming Languages
(BASIC, C, ASM)

Device PLC PC or Micro-Computer
Application Automation, Machine-

Control
General Computing

Advantages Sequencer, Bit Logic,
Timers, Counters

Complex Math,
Data Communication,
Data Collection & Process, Analysis,
Graphic Interface

Basic
Mechanism

Parallel Sequential

Ladder Logic’s parallelism and BASIC sequential language both have
advantages. Ladder Logic makes controlling unrelated parallel tasks easy,
which can be difficult with BASIC. On the other hand, BASIC can easily
process complex sequential tasks and has a wider range of commands and
interface abilities.

That is why we created “CUBLOC,” where the user is free to use both
Ladder Logic and/or BASIC based on the application being created. After
understanding the advantages of both Ladder Logic and BASIC, the user will
be able to create more efficient final products while saving development
time and cost.

 27

Multi-tasking of Ladder Logic
and BASIC

There are many ways to implement both BASIC and Ladder Logic in one
processor. The current products on the market use BASIC as part of
Ladder Logic. These products support BASIC and Ladder Logic but there is
one clear weakness.

P0 P1 Print "Setting Mode"
A = A + 1
B = B +1
RETURN

FUNC #1

FUNC #1

The first weakness is that when based on the execution time of BASIC,
Ladder Logic also gets affected. If the BASIC code is made up of an infinite
loop, Ladder Logic will also stop. Ladder Logic’s main advantage is that it
can process input in a guaranteed scan-time. If Ladder Logic cannot
process within this guaranteed scan-time because of BASIC, it might be
better to not include BASIC capabilities.

The second weakness is that BASIC routines can only be started from
Ladder Logic. BASIC is a powerful language and is able to process complex
algorithms in a sequential manner. But if we can only use BASIC as part of
Ladder Logic, we are not utilizing all of its capabilities.

The third weakness involves I/O. BASIC language’s execution of I/O can
create unwanted collisions with LADDER. The reason is that Ladder Logic
I/O is updated once per scan, while in BASIC I/O is immediately accessed.

After solving these problems, we have created a BASIC and Ladder Logic
processor that supports real-time multi-tasking. BASIC runs BASIC and
LADDER runs LADDER, without causing collisions.

 28

Even if you only use BASIC, you will be able to build innumerable
applications. In comparison to many other BASIC processors on the
market today, CUBLOC’s BASIC has a faster processing speed and the
upper hand on the main features.

In the case of I/O, the user can specify the I/O used by BASIC and LADDER,
thereby eliminating I/O collision problems.

If you use Ladder, we recommend using some BASIC as a method of
supervising the Ladder operations.

For example, there is a MASTER CONTROL feature in Ladder Logic, allowing
the user to set Control Zones. Control Zones are sections within the Ladder
Logic containing portions of the control circuit. With the MASTER CONTROL
feature, the user can enable/disable Ladder Logic’s Control Zones easily.

If A=1 THEN _M(1) = 1

If B=1 THEN _M(1) = 0

P0

M1

P3

P2 P9

MCS 0

MCSCLR 0

In BASIC, the user may read or write to Ladder Logic’s data memory. In the
above example, you can access Register M1 as _M(1) and write to it from
BASIC.

 29

Advantages of an On-Chip
PLC/Embedded Computer

One of the main advantages of CUBLOC is that it is an “On-Chip” PLC.
Normally, we think of PLC as a block type case with input and output lines.
These modules are usually mounted within yet another case, with external
power supplies, additional output modules, and other wiring requirements

This is usually fine for one or two applications, but doesn’t lend itself easily
to larger scale production. CUBLOC modules can be easily integrated into a
custom product, providing all the features of a PLC yet the professional
appearance and lower manufacturing cost of a custom design.

CUBLOC
CORE MODULE

CUBLOC
CORE MODULE

 30

CUBLOC is an On-Chip PLC, allowing an easy fit on a PCB. You may use
the PLC almost like an MCU. You can design a customized PCB for the
desired product which reduces the cost and size of your final product, and
most importantly, allows your product to be one-of-a-kind.

The following table shows differences between a traditional PLC and “On-
Chip” PLC/Micro-computer, CUBLOC.

 Traditional PLC CUBLOC

Production Din Rail Attachment Din Rail or PCB
Labor Costs High Low

Mass
Production

Difficult Easy

Final Product
Cost

High Low

Final Size Large Compact

If you are currently distributing a system using a traditional PLC, please
review our products and compare the costs if you change it to a PCB type.
We believe that you will have much more satisfactory final product at a
fraction of cost.

 31

Development Environment
To use Cubloc Studio, the user can install it on a Windows XP, 2000, or 98
operating system equipped computer. If you would like to use it in a
Linux/Unix/Macintosh environment, you will need to install a virtual machine
of some type (such as VMware, etc…) that allows the Windows operating
system to run on it. An RS232 port is also required, or you may use a
USB-to-RS232C converter.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

1

2

3

4

5

6

7

8

9

RS232

Download and Monitoring is possible when connected to the PC. When the
CUBLOC is disconnected from the PC, it goes into a stand-alone state. The
main program is stored in CUBLOC’s flash memory, and will be retained
even with no power. The user may download new programs and erase
them 10,000 or more times per device.

CB280 core module with Study Board

 32

Download and Monitoring
through the Internet

XPORT is an internet module that converts RS232 signals into TCP or UDP
packets. You can use XPORT and CUBLOC to download and monitor
programs through the internet.

By using this feature, you will be able to update and provide customer
service for your products even if it’s located in other parts of the world. We
provide custom MAXPORT firmware, Downloading/Monitoring Server
programs and embeddable applets for downloading and monitoring your
CUBLOC module. You may use this program to manage thousands of
devices.

MAXPORT module

Monitoring/Download Server Program for multiple MAXPORTs

 33

Hints for Traditional PLC Users

For users with much experience in traditional PLCs, they will find BASIC a
completely new language. CUBLOC is a PLC with BASIC language
capabilities added. The user may program only using the ladder language, if
desired.

Even a Ladder Logic user may be able to incorporate new features into the
final product by making use of BASIC, which has additional capabilities and
flexibility in communicating with other devices than PLCs.

To use CUBLOC, the user does not have to know BASIC. He/She may
simply use only LADDER for development. If the user does not require LCD
display or keypad usage, he or she does not need to use BASIC at all.

As you can realize, more emphasis on user interface is becoming apparent
in our industrial world. CUBLOC is able to overcome the deficiencies and
disadvantages of traditional PLCs by being able to use both BASIC and
LADDER language.

DISPLAY

MACHINE CONTROL

KEYPAD

PC INTERFACE

We provide many BASIC libraries for user interfaces which you can simply
copy & paste to achieve the user interface structure desired.

 34

Hints for Microcontroller Users

Microcontrollers are self-contained programmable computers such as PIC,
AVR, and 8051. For mass-production, MCUs can cut costs and reduce the
overall product size. But one disadvantage is that it can be difficult to learn
everything necessary to program an unfamiliar controller. The hardware,
commands, even programming tools vary widely between controller families.
This can be a drawback for low quantity or frequently-modified projects.

Even experienced engineers can feel that MCU programming is time-
consuming. To make a final product, it takes many hours programming
and debugging with an MCU. Even after development, if bugs arise, it can
be difficult to update the MCU.

In comparison, Comfile’s CUBLOC will cut the users development time as
much as 20 times, and provide a MCU-like chip that is upgradeable through
RS232 cable or even through the internet by using an XPORT. By providing
a way to upgrade the final product, the value is increased.

If you have experience programming with MCUs, we guarantee you that
development of your final product will be much easier CUBLOC. You will be
able to spend more time designing the features of your final product,
instead of spending hours relearning register locations and compiler syntax.
Having CUBLOC hardware on hand means that you can respond
immediately to any equipment control needs.

MCU engineer's desk CUBLOC 's deskengineer

target board target board

PC compiler

flash programmer

emulator

mcu

socket
PC

cubloc

 35

CUBLOC’s Internal Structure

BASIC
Data Memory

LADDER
Data Memory

I/O Ports

SRAM
2KB~51KB

SRAM
1KB~4KB

FLASH
200KB

FLASH
200KB

1) 2)3)4)

5)

The BASIC Interpreter controls a Flash storage area for the user’s BASIC
programs. The LADDER processor also has a Flash storage area for the
user’s LADDER program. I/O ports are shared between BASIC and LADDER,
allowing free access to both.

BASIC data memory can only be accessed by the BASIC Interpreter while
LADDER data memory can be accessed by both the BASIC Interpreter and
the LADDER Processor.

BASIC (1) and LADDER (2) share the same Flash memory. The total
available memory space is 80KB for some models, 200KB for others. BASIC
and LADDER can both use up to the entire memory area, if needed.

I/O ports (5) can be used both by BASIC and LADDER. The user must
specify I/O ports to use in LADDER and BASIC. All I/O ports can be used in
LADDER or BASIC.

 36

CUBLOC Peripherals

PROTO BOARD Series
Proto-boards for CUBLOC can be used for testing and debugging your future
products before starting PCB artwork or production. These proto-boards all
include basic power and interface circuits.

BASE BOARD / CUSB Series
The CUBASE and CUSB series are especially geared for the industrial field
applications. Simply attach our Plug-N-Play relays to CUBASE output
ports for implementing solenoids, limit switches, etc.,. With 24V input ports
and DIN rail mounting brackets, the CUBASE and CUSB series integrate
quickly into any automation project. For even greater integration, the
CUSB series contains a switching power supply for direct operation from AC
power (except CUSB-22D, requires 24V power). The CUSB modules have
integrated relays and optoisolated inputs, all accessible through screw-
clamp terminals.

 37

STUDY BOARD
The Study Board is geared for CUBLOC first-timers. Connections for simple
experiments including switches, LED, RS232 communication, I2C, piezo,
ADC, toggle switches, and LCDs are included. We recommend the Start Kits,
which include a study board, a CUBLOC module, necessary cables, and a
manual.

LCD DISPLAY Module
(CLCD, GHLCD Series)
Various LCD displays are provided for use with CUBLOC using CUNET (I2C)
protocol. With one line commands (PRINT, CLS, etc…), you can easily start
printing to the LCD without complex commands.

CUNET is especially engineered for CUBLOC displays, therefore, we
recommend using CUNET supported LCDs for quick and easy development.
Our Graphic Display GHLCD allows you to download black and white BMP
images to the onboard memory and retrieve on command.

 38

Seven Segment Display Modules (CSG Series)

Seven segment display modules can be easily implemented using CUBLOC’s
I2C protocol and native commands.

CUTOUCH Series
CUTOUCH is an integration of our graphic LCD, touch panel, and CUBLOC
core module. With BASIC, you can control the LCD and touch panel. With
Ladder Logic, I/O ports can be controlled in real-time.

We are constantly upgrading and developing new peripherals for CUBLOC
core modules. Please check out our website www.cubloc.com often for these
updates.

 39

Chapter 2:
Hardware

 40

Hardware Features

CUBLOC has the following features:

z (BASIC and/or Ladder Logic) 80KB or 200KB Flash Memory
BASIC Execution Speed : 36,000 instructions per second

z LADDER Execution Speed : 10 millisecond scan time
 (Turbo Mode ~= 100 microseconds)

z Data Memory for BASIC: 2KB to 51KB
z Data Memory for LADDER: 1KB to 4KB
z EEPROM Memory: 4KB
z 16 to 91 I/O pins (Ports)
z 8 to 16 10-bit ADC channels
z 8 to 16bit, 3 to 12 PWM channels (DAC)
z UART (H/W RS232C ports) 2 to 4 channels
z RTC chip included (CB290)

Model Comparison Chart

Feature

CB220

CB280

CB290

CB405

CB320

CB380

Program Memory 80KB 80KB 80KB 200KB 200KB 200KB
Data Memory BASIC 2KB

LADDER 1KB
BASIC 2KB
LADDER 1KB

BASIC 24KB
LADDER 4KB

BASIC 51KB
LADDER 4KB
HEAP 55KB

BASIC 6KB
LADDER 1KB

BASIC 6KB
LADDER 1KB

Battery
Backup

N/A N/A Available Available N/A N/A

EEPROM 4KB 4KB 4KB 4KB 4KB 4KB
I/O ports 16 + 6 49 + 2 91 + 2 64 + 2 16 + 6 49 + 2
Package 24 pin DIP 64 pin

Module
108 pin
Module

80 pin Module 24 pin DIP 64 pin Module

ADC 8 Channel 8 Channel 8 Channel 16 Channel 8 Channel 8 Channel
PWM 3 Channel 6 Channel 6 Channel 12 Channel 3 Channel 6 Channel
RS232 2 Channel 2 Channel 2 Channel 4 Channel 2 Channel 2 Channel
External Interrupt None 4 4 4 4 4
HIGH COUNT
INPUT

2 Channel 2 Channel 2 Channel 2 Channel 2 Channel 2 Channel

RTC None None Yes None None None

 41

CB220 / CB320
The CB220 is a 24 pin Wide DIP style package. It has 16 I/O ports and an
internal 5V power regulator. CB220 rev B and CB320 has 6 spare I/O.

SOUT
SIN

ATN
VSS

SS_ADC0_P0
(Input only)SCK_ADC1_P1

MOSI_ADC2_P2
MISO_ADC3_P3

ADC4_P4
PWM0_ADC5_P5
PWM1_ADC6_P6
PWM2_ADC7_P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN (5.5V~12Vinput)
VSS
RES
VDD
P15_HCNT1
P14_HCNT0
P13
P12
P11_TX1
P10_RX1
P9_SDA(CUNET)
P8_SCL(CUNET)

18 19 20

23 22 21

Port Pin I/O Port Block Explanation
SOUT 1 OUT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER

GROUND
P0 5 I/O ADC0 / SPI SS
P1 6 Input ADC1 / SPI SCK
P2 7 I/O ADC2 / SPI MOSI
P3 8 I/O ADC3 / SPI MISO
P4 9 I/O ADC4
P5 10 I/O PWM0 / ADC5
P6 11 I/O PWM1 / ADC6
P7 12 I/O

Block 0

PWM2 / ADC7
P8 13 I/O CuNET SCL
P9 14 I/O CuNET SDA
P10 15 I/O RS232C Channel 1 RX
P11 16 I/O RS232C Channel 1 TX
P12 17 I/O
P13 18 I/O
P14 19 I/O High Count channel 0
P15 20 I/O

Block 1

High Count channel 1
P18 I/O
P19 I/O PWM3
P20 I/O PWM4 / INT0
P21 I/O PWM5 / INT1
P22 I/O INT2
P23 I/O

Block 2

INT3
VDD 21 I/O 5V Output/Input
RES 22 IN RESET Input (LOW signal resets!)
VSS 23 IN GROUND
VIN 24 IN 5.5V to 12V Input Power

 42

SIN, SOUT, ATN are RS232 communication pins, used with a PC or XPORT
for DOWNLOAD, DEBUG, and MONITORING. All CUBLOC models have
SOUT, SIN, ATN pins and are connected to a PC serial cable as shown below.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

1

2

3

4

5

6

7

8

9

Other pins are mostly I/O ports. The user may select which ports (pins) to
use as INPUT or OUTPUT. When set to INPUT, the pin enters a HIGH
impedance state; when set to OUTPUT, the pin either outputs LOW or HIGH.
The maximum current (source/sink) available from the output ports is
25mA. The user is free to choose which I/O ports he/she will use for which
purpose (such as ADC, PWM, etc…).

 43

Supplying power to the CB220 /
CB320

CB220 / 320 has an internal 5V power regulator that accepts a DC input
between 5.5V to 12V.

It will produce a stable 100mA 5V. When using the internal regulator, the
supply voltage can be applied to pin 24, and 5V will appear on pin 21. If a
5V regulated power source is already available, the user may simply
connect it to pin 21. If your application requires more than the 100mA of
current that can be supplied by the internal regulator, please use a separate
power supply.

Method 1

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

1

2

3

4

5

6

7

8

9

DC5.5~12V

Method 2

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Tx

DTR

GND

1

2

3

4

5

6

7

8

9

DC5V

 44

CB280 / CB380
The CB280 or CB380 is a 64 pin package and 49 of those pins can be used
for I/O. The CB280 or CB380 does not have a 5V internal regulator; you
must supply a 5V regulated power source.

SOUT
SIN
ATN
VSS

SS_P0
(Input_only)SCK_P1

MOSI_P2
MISO_P3

P4
PWM0_P5
PWM1_P6
PWM2_P7

(CUNET)SCL_P8
(CUNET)SDA_P9

P10
P11

TX1
RX1

AVDD
N/C

ADC0_P24
ADC1_P25
ADC2_P26
ADC3_P27

P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19_PWM3
P20_PWM4_INT0
P21_PWM5_INT1
P22_INT2
P23_INT3
P15_HCNT1
P14_HCNT0
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31_ADC7
P30_ADC6
P29_ADC5
P28_ADC4
P32
P33
P34
P35
P36
P37
P38
P39

CB280

Port Pin I/O Port

Block
Explanation

SOUT 1 OUT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER

GROUND
P0 5 I/O SPI SS
P1 6 Input SPI SCK
P2 7 I/O SPI MOSI
P3 8 I/O SP MISO
P4 9 I/O
P5 10 I/O PWM Channel 0
P6 11 I/O PWM Channel 1
P7 12 I/O

Block 0

PWM Channel 2
P8 13 I/O CuNET SCL
P9 14 I/O CuNET SDA
P10 15 I/O
P11 16 I/O
P12 32 I/O
P13 31 I/O
P14 30 I/O High Count Channel 0
P15 29 I/O

Block 1

High Count Channel 1
P16 21 I/O
P17 22 I/O
P18 23 I/O
P19 24 I/O PWM Channel 3
P20 25 I/O PWM Channel 4 / INT Channel 0
P21 26 I/O PWM Channel 5 / INT Channel 1
P22 27 I/O INT Channel 2
P23 28 I/O

Block 2

INT Channel 3

 45

P24 37 I/O ADC0 : AD Channel 0
P25 38 I/O ADC1 : AD Channel 1
P26 39 I/O ADC2 : AD Channel 2
P27 40 I/O ADC3 : AD Channel 3
P28 56 I/O ADC4 : AD Channel 4
P29 55 I/O ADC5 : AD Channel 5
P30 54 I/O ADC6 : AD Channel 6
P31 53 I/O

Block 3

ADC7 : AD Channel 7
P32 57 I/O
P33 58 I/O
P34 59 I/O
P35 60 I/O
P36 61 I/O
P37 62 I/O
P38 63 I/O
P39 64 I/O

Block 4

P40 48 I/O
P41 47 I/O
P42 46 I/O
P43 45 I/O
P44 44 I/O
P45 43 I/O
P46 42 I/O
P47 41 I/O

Block 5

P48 52 I/O
VDD 17 IN Power, 4.5V to 5.5V
VSS 18 IN GROUND
RES 19 IN RESET Input (LOW signal resets!),

Normally HIGH or OPEN
TX1 33 RS232 Channel 1, +/- 12V Data Output
RX1 34 RS232 Channel 1, +/- 12V Data Input
AVDD 35 ADC Power
TTLTX1 49 RS232 Channel 1, 5V (TTL level) Data

Output
TTLRX1 50 RS232 Channel 1, 5V (TTL level) Data

Input
AVREF 51 ADC Reference Voltage

 46

How to supply power to the
CB280 / CB380

The CB280 or CB380 does not have an internal 5V regulator; you must
provide your own 5V power as shown below.

Rx

Tx

DTR

GND

1

2

3

4

5

6

7

8

9

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

DC5V

* Pin 20 and 36 are not used, please DO NOT CONNECT anything.

 47

CB290
The CB290 is a 108 pin package, of which 91 pins can be used as I/O ports.
It has a battery-backup-capable 28KB of memory and an RTC. The CB290
does not have an internal 5V regulator. Of the 91 I/O ports, 32 ports are
output only, 32 ports are input only, and rest can be set as output or input
as desired by the user program.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
Sin
Atn
Vss

SS_P0
Input only) SCK_P1

MOSI_P2
MISO_P3

P4
PWM0_P5
PWM1_P6
PWM2_P7

P56
P57
P58
P59
P60
P61
P62
P63

(

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P8 ADC0
P9 ADC1
P10 ADC2
P11_ADC3
P12_ADC4
P13_ADC5
P14_ADC6
P15_ADC7
P64
P65
P66
P67
P68
P69
P70
P71

_
_
_

95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

P
W

M
4

_P
90

P
W

M
5

_
P

91
P

20
P

21
 H

C
N

T0
_

P
22

H
C

N
T1

_
P

23
P

76
P

77
P

78
P

79
P

84
P

85
P

86
P

87

81 82 83 84 85 86 87 88 89 90 91 92 93 94

N
/C

P
89

P

W
M

3
P

16

 S
C

L
C

U
N

E
T

)
P

17
 S

D
A

(C
U

N
E

T
)

P
18

 IN

T3
P

19
 I

N
T4

P
72

P
73

P
74

P
75

P
80

P
81

P
82

P
83

_ _
(

_ _ _

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TX1
RX1

AVdd
Vdd
P24
P25
P26
P27
P28
P29
P30
P31
P40
P41
P42
P43
P44
P45
P46
P47

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTX1
TtlRX1
AVref
Vss
P32
P33
P34
P35
P36
P37
P38
P39
P48
P49
P50
P51
P52
P53
P54
P55

CB290

Port Pin I/O Port Block Explanation
SOUT 1 OUT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4 POWER

GROUND
P0 5 I/O SPI SS
P1 6 Input SPI SCK
P2 7 I/O SPI MOSI
P3 8 I/O SPI MISO
P4 9 I/O
P5 10 I/O PWM Channel 0
P6 11 I/O PWM Channel 1
P7 12 I/O

Block 0

PWM Channel 2
P8 25 I/O ADC0 : AD Channel 0
P9 26 I/O ADC1 : AD Channel 1
P10 27 I/O ADC2 : AD Channel 2
P11 28 I/O ADC3 : AD Channel 3
P12 29 I/O ADC4 : AD Channel 4
P13 30 I/O ADC5 : AD Channel 5
P14 31 I/O ADC6 : AD Channel 6
P15 32 I/O

Block 1

ADC7 : AD Channel 7

 48

P16 83 I/O CUNET SCL
P17 84 I/O CUNET SDA
P18 85 I/O INT Channel 2
P19 86 I/O INT Channel 3
P20 97 I/O
P21 98 I/O
P22 99 I/O High Count Channel 0
P23 100 I/O

Block 2

High Count Channel 1
P24 45 Output
P25 46 Output
P26 47 Output
P27 48 Output
P28 49 Output
P29 50 Output
P30 51 Output
P31 52 Output

Block 3

P32 65 Output
P33 66 Output
P34 67 Output
P35 68 Output
P36 69 Output
P37 70 Output
P38 71 Output
P39 72 Output

Block 4

P40 53 Output
P41 54 Output
P42 55 Output
P43 56 Output
P44 57 Output
P45 58 Output
P46 59 Output
P47 60 Output

Block 5

P48 73 Output
P49 74 Output
P50 75 Output
P51 76 Output
P52 77 Output
P53 78 Output
P54 79 Output
P55 80 Output

Block 6

P56 13 Input
P57 14 Input
P58 15 Input
P59 16 Input
P60 17 Input
P61 18 Input
P62 19 Input
P63 20 Input

Block 7

 49

P64 33 Input
P65 34 Input
P66 35 Input
P67 36 Input
P68 37 Input
P69 38 Input
P70 39 Input
P71 40 Input

Block 8

P72 87 Input
P73 88 Input
P74 89 Input
P75 90 Input
P76 101 Input
P77 102 Input
P78 103 Input
P79 104 Input

Block 9

P80 91 Input
P81 92 Input
P82 93 Input
P83 94 Input
P84 105 Input
P85 106 Input
P86 107 Input
P87 108 Input

Block 10

P88 81 N/C N/C (Do not use this I/O number)
P89 82 I/O PWM Channel 3
P90 95 I/O PWM Channel 4 / INT Channel 0
P91 96 I/O

Block 11

PWM Channel 5 / INT Channel 1
VDD 21,44 IN Power, 4.5V to 5.5V
VSS 22,64 IN GROUND
RES 23 IN RESET Input (LOW signal resets!),

Normally HIGH or OPEN
VBB 24 IN Battery Backup
TX1 41 RS232 Channel 1, +/- 12V Data

Output
RX1 42 RS232 Channel 1, +/- 12V Data

Input
AVDD 43 ADC Power
TTLTX1 61 RS232 Channel 1, 5V (TTL level)

Data Output
TTLRX1 62 RS232 Channel 1, 5V (TTL level)

Data Input
AVREF 63 ADC Reference Voltage

 50

The CB290 output-only pins P24 to P55 are in high impedance state(High-Z)
at power ON. You must use “Set Outonly On” to enable the pins if you wish
to use them.

 Set Outonly On

The Set Outonly command actually toggles a virtual Port 88 to enable the
output-only pins. If your program accidentally uses P88, you will see
strange behavior on the output-only pins. Please do not access P88 in
Basic or Ladder.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
Sin
Atn
Vss

SS_P0
Input only) SCK_P1

MOSI_P2
MISO_P3

P4
PWM0_P5
PWM1_P6
PWM2_P7

P56
P57
P58
P59
P60
P61
P62
P63

(

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P8 ADC0
P9 ADC1
P10 ADC2
P11_ADC3
P12_ADC4
P13_ADC5
P14_ADC6
P15_ADC7
P64
P65
P66
P67
P68
P69
P70
P71

_
_
_

95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

P
W

M
4

_P
90

P
W

M
5

_
P

91
P

20
P

21
H

C
N

T0
_

P
22

H
C

N
T1

_
P

23
P

76
P

77
P

78
P

79
P

84
P

85
P

86
P

87

81 82 83 84 85 86 87 88 89 90 91 92 93 94

N
/C

P
89

P

W
M

3
P

16

 S
C

L
C

U
N

E
T

)
P

17
 S

D
A

(C
U

N
E

T
)

P
18

 IN

T3
P

19
 I

N
T4

P
72

P
73

P
74

P
75

P
80

P
81

P
82

P
83

_ _
(

_ _ _

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TX1
RX1

AVdd
Vdd
P24
P25
P26
P27
P28
P29
P30
P31
P40
P41
P42
P43
P44
P45
P46
P47

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTX1
TtlRX1
AVref
Vss
P32
P33
P34
P35
P36
P37
P38
P39
P48
P49
P50
P51
P52
P53
P54
P55

CB290

Output Only

CB2900 1

7 8

2 9 10

5 6

3 4

11

Port Blocks

 51

CB405
The CB405 is an 80 pin package, of which 64 pins can be used as I/O ports.
It has a battery-backup-capable 55KB of memory. The CB405 does not
have an internal 5V regulator.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
Sin
Atn
Vss
P0

SCK / P1
MOSI / P2
MISO / P3

P4
PWM0 / P5
PWM1 / P6
PWM2 / P7

RX2 / P8
TX2 / P9

P10
PWM6 / P11
PWM7 / P12
PWM8 / P13

P14
P15

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P16 / AD0
P17 / AD1
P18 / AD2
P19 / AD3
P20 / AD4
P21 / AD5
P22 / AD6
P23 / AD7
P24
P25
P26
P27 / PWM3
P28 / PWM4 INT0
P29 / PWM5/ INT 1
P30 / INT2
P31 / INT3

 /

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TXE
RXE

AVdd
Vdd

AD8 / P32
AD9 / P33

AD10 / P34
AD11 / P35
AD12 / P36
AD13 / P37
AD14 / P38
AD15 / P39

HCNT1 / P47
HCNT0 / P46

P45
P44

TX1 / P43
RX1 / P42
SDA / P41
SCL / P40

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTXE
TtlRXE
AVref
Vss
P48
P49
P50
P51 / PWM9
P52 / PWM10
P53 / PWM11
P54
P55
P63
P62
P61
P60
P59
P58
P57 / TX3
P56 / RX3

CB405
Input
Only

Name Pin # I/O Explanation
SOUT 1 OUT DOWNLOAD SERIAL OUTPUT
SIN 2 IN DOWNLOAD SERIAL INPUT
ATN 3 IN DOWNLOAD SERIAL INPUT
VSS 4, 22, 64 POWER IN GROUND
VDD 21, 44 POWER IN 4.5V to 5.5V Power Supply
AVDD 43 POWER IN ADC power
AVREF 63 IN ADC Reference Voltage
VBB 24 POWER IN Battery Backup
RES 23 IN RESET pin
TTLTXE 61 OUT RS232 to TTL232 curcuit, TX contact
TTLRXE 62 IN RS232 to TTL232 curcuit, RX contact
TXE 41 OUT RS232 Output, +/- 12V
RXE 42 IN RS232 Input, +/- 12V

 52

The following is I/O Ports explained in PortBlocks.

Block Name Pin# I/O Function Explanation

P0 5 I/O SPI SS
P1 6 Input SPI SCK Input Only
P2 7 Input SPI MOSI Input Only
P3 8 Input SPI MISO Input Only
P4 9 I/O
P5 10 I/O PWM CHANNEL 0
P6 11 I/O PWM CHANNEL 1

0

P7 12 I/O PWM CHANNEL 2

P8 13 I/O TTL232 RX2 TTLRX channel 2
P9 14 I/O TTL232 TX2 TTLTX channel 2
P10 15 I/O
P11 16 I/O PWM CHANNEL 6
P12 17 I/O PWM CHANNEL 7
P13 18 I/O PWM CHANNEL 8
P14 19 I/O

1

P15 20 I/O

P16 25 I/O AD CHANNEL 0
P17 26 I/O AD CHANNEL 1
P18 27 I/O AD CHANNEL 2
P19 28 I/O AD CHANNEL 3
P20 29 I/O AD CHANNEL 4
P21 30 I/O AD CHANNEL 5
P22 31 I/O AD CHANNEL 6

2

P23 32 I/O AD CHANNEL 7

P24 33 I/O Co-processor SCL 1)
P25 34 I/O Co-processor SDA 1)
P26 35 I/O Co-processor INT 1)
P27 36 I/O PWM3
P28 37 I/O PWM4 / INT0
P29 38 I/O PWM5 / INT1
P30 39 I/O INT2

3

P31 40 I/O INT3

1) Communication line for connecting to coprocessor (Please try to save
these pins for future coprocessor communication ports.)

 53

Block Name Pin# I/O Function Explanation

P32 45 I/O AD CHANNEL 8
P33 46 I/O AD CHANNEL 9
P34 47 I/O AD CHANNEL 10
P35 48 I/O AD CHANNEL 11
P36 49 I/O AD CHANNEL 12
P37 50 I/O AD CHANNEL 13
P38 51 I/O AD CHANNEL 14

4

P39 52 I/O AD CHANNEL 15

P40 60 I/O SCL CUNET clock pin
P41 59 I/O SDA CUNET data pin
P42 58 I/O RX1 TTLRX channel 1
P43 57 I/O TX1 TTLTX channel 1
P44 56 I/O
P45 55 I/O
P46 54 I/O HCNT0 High Counter 0

5

P47 53 I/O HCNT1 High Counter 1

P48 65 I/O
P49 66 I/O
P50 67 I/O
P51 68 I/O PWM CANNEL 9
P52 69 I/O PWM CANNEL 10
P53 70 I/O PWM CANNEL 11
P54 71 I/O

6

P55 72 I/O

P56 80 I/O RX3 TTLRX channel 3
P57 79 I/O TX3 TTLTX channel 3
P58 78 I/O
P59 77 I/O
P60 76 I/O
P61 75 I/O
P62 74 I/O

7

P63 73 I/O

 54

How to connect a battery to
CB290/CB405

When a supercapacitor is connected to the VBB of a CB290/CB405, the
memory can be maintained for a couple days to a couple weeks once
powered off. The CB290/CB405 consumes about 15-20mA of current when
idling. For a longer backup period, a battery pack can be used. A
protection diode as shown below is necessary when using a battery, as the
device normally attempts to charge a capacitor through that pin. Due to
the relatively high standby current for battery backup, it is recommended to
keep the device powered if possible and only maintain battery backup for
short periods of emergency use.

VBB

CB290

Power Features
z Operating Voltage : 4.5V to 5.5V
z Operating Clock : 18.432MHz
z I/O Port Source Current : 20mA
z I/O Port Sink Current : 25mA
z Operating Temperature : -40 to 125 Degrees(Celcius)
z Maintenance Temperature: -60 to 140 Degrees(Celcius)
z Operating Humidity : 5 to 95% RH

(Keep the board's surface dry when testing and/or operating)

Additional Information
If CUBLOC module is supplied with power above recommended voltage, the
chip can be destroyed. Please be careful of static electricity that could
damage the chip. Please be aware that P1 is an input-only pin. To reduce
accidental power drain, please set unused pins to input; all I/Os are set to
input as default at power on. When not using SIN, SOUT, and ATN pins,
please do not connect them to anything.

 55

Dimensions

15.24mm (600 mil)

30mm (1181mil)

CB220

18.415mm (725 mil)

34.9mm (1374mil)

25.4mm (1000 mil)

2mm (78.74 mil)

2mm (78.74 mil)

CB280

 56

2mm (78.74 mil)

36.83mm (1450 mil)

10.8mm (425 mil)

49.53mm (1950 mil)

59.4mm (2338 mil)

2mm (78.74 mil)

47.8mm (1882mil)

CB290
CB405

9.5mm (374mil)

14.0 ~14.9mm (551~586mil)

CB290 CB405

Please refer to the diagram below for PCB design. The numbers are offsets
based on location 0, 0 (from the top left corner of the module’s internal PCB,
not the external plastic case).

CB290
CB405

X:0
Y:0

X:150
Y:1600

X:2100
Y:1600

X:575
Y:150

Unit : 1/1000 Inch (Mil

 57

CUBLOC Chipset : CB280CS
The CB280CS has exactly the same features as a regular CB280 module,
but in a chipset format. The CB280CS must be soldered into a custom
circuit board. This will lower your overall production cost while integrating
CB280 functions into your product seamlessly.

Since this chipset has the same features as a regular CB280, we
recommend you develop your applications on the CB280 before going into
production with a chipset version.

*The CB280CS includes the main chip and sub chip only. Any other parts
must be sourced by the user.

Main chip pinout

Pin # Port Function Desc.
1 VDD Power Supply
2 RX0 DOWNLOAD RX RS232-RX
3 TX0 DOWNLOAD TX RS232-TX
4 P18 I/O port
5 P19 PWM3 I/O port
6 P20 PWM4 / INT0 I/O port
7 P21 PWM5 / INT1 I/O port
8 P22 INT2 I/O port
9 P23 INT3 I/O port
10 P0 SS I/O port
11 P1 SCK I/O port
12 P2 MOSI I/O port

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

VDD

RX0

TX0

P18

(PWM3) P19

(PWM4 / INT0)) P20

(PWM5 / INT1) P21

(INT2)P22

(INT3)P23

(SS) P0

(SCK) P1

(MOSI) P2

(MISO) P3

P4

(PWM0) P5

(PWM1) P6

(P
W

M
2)

 P
7

P
16

P
17

R
E

S
E

T

V
D

D

V
S

S

X
TA

LO
U

T

X
TA

LI
N

(C
U

N
E

T
_S

C
L)

 P
8

(C
U

N
E

T_
S

D
A

)P
9

R
X

1

T
X

1

P
12

P
13

(H
C

N
T0

) P
14

(H
C

N
T1

)P
15

P35

P36

P37

P38

P39

P48

P47

P46

P45

P44

P43

P42

P41

P40

P11

P10

AV
D

D

V
S

S

A
R

E
F

P
24

(A
D

C
0)

P
25

(A
D

C
1)

P
26

(A
D

C
2)

P
27

(A
D

C
3)

P
28

(A
D

C
4)

P
29

(A
D

C
5)

P
30

(A
D

C
6)

P
31

(A
D

C
7)

V
S

S

V
D

D

P
32

P
33

P
34

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

CB280CS

TM

VDD

R5

R4

R3

1

2

3

4

8

7

6

5

VSS

R0

R1

R2

CB280CS
Sub ChipMain Chip

 58

13 P3 MISO I/O port
14 P4 I/O port
15 P5 PWM0 I/O port
16 P6 PWM1 I/O port
17 P7 PWM2 I/O port
18 P16 I/O port
19 P17 I/O port
20 /RESET Reset (Low active)
21 VDD Power supply
22 VSS Ground
23 XTALOUT Xtal output
24 XTALIN Xtal input
25 P8 CUNET_SCL I/O port
26 P9 CUNET_SDA I/O port
27 RX1 RS232 CH1 RX RS232 Channel 1 Rx
28 TX1 RS232 CH1 TX RS232 Channel 1 Tx
29 P12 I/O port
30 P13 I/O port
31 P14 HCOUNT0 I/O port
32 P15 HCOUNT1 I/O port
33 P10 I/O port
34 P11 I/O port
35 P40 I/O port
36 P41 I/O port
37 P42 I/O port
38 P43 I/O port
39 P44 I/O port
40 P45 I/O port
41 P46 I/O port
42 P47 I/O port
43 P48 I/O port
44 P39 I/O port
45 P38 I/O port
46 P37 I/O port
47 P36 I/O port
48 P35 I/O port
49 P34 I/O port
50 P33 I/O port
51 P32 I/O port
52 VDD Power supply
53 VSS Ground
54 P31 ADC7 I/O port
55 P30 ADC6 I/O port
56 P29 ADC5 I/O port
57 P28 ADC4 I/O port
58 P27 ADC3 I/O port
59 P26 ADC2 I/O port
60 P25 ADC1 I/O port
61 P24 ADC0 I/O port
62 AREF Ref. for ADC
63 VSS Ground
64 AVDD Power supply for ADC

Please refer to Appendix F for a detailed CB280CS specification.

 59

Example CB280CS Application Schematic

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

P18

(PWM3) P19

(PWM4 / INT0)) P20

(PWM5 / INT1) P21

(INT2)P22

(INT3)P23

(SS) P0

(MOSI) P2

(MISO) P3

P4

(PWM0) P5

(PWM1) P6

(P
W

M
2)

 P
7

P
16

P
17

V
D

D

V
S

S

X
TA

LO
U

T

X
TA

LI
N

(C
U

N
E

T
_S

C
L)

 P
8

(C
U

N
E

T_
S

D
A

)P
9

R
X

1

TX
1

P
12

P
13

(H
C

N
T

0)
 P

14

(H
C

N
T1

)P
15

R
E

S
E

T

P35

P36

P37

P38

P39

P48

P47

P46

P45

P44

P43

P42

P41

P40

P11

P10

RX0

TX0

(SCK)P1

VDD

AV
D

D

V
S

S

A
R

E
F

P
24

(A
D

C
0)

P
25

(A
D

C
1)

P
26

(A
D

C
2)

P
27

(A
D

C
3)

P
28

(A
D

C
4)

P
29

(A
D

C
5)

P
30

(A
D

C
6)

P
31

(A
D

C
7)

V
S

S

V
D

D

P
32

P
33

P
34

48

47

46

45

44

43

42

41

40

39

38

37

36

35

34

33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

CB280CS

TM

VDD

R5

R4

R3

VSS

R0

R1

R2

Supervisor

to PC
DOWNLOAD

ATMEGA128-16A

18.4320MHz
OSCILLATOR

P
IC

12F675

Main Chip

1

1

5

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10

9

5V
5V

5V

5V

I/O 1

0.1uF

0.1uF x 2

1Kohm x 2

1Kohm

1Kohm

TX
RX

DTR

0.1uF

0.1uF

0.1uF

0.1uF

VDD

VSS

OSCOUT

 60

MEMO

 61

Chapter 3:
CUBLOC
STUDIO

 62

CUBLOC STUDIO Basics

After installing CUBLOC STUDIO and executing it, you will see the following
screen.

You will see that at first CUBLOC STUDIO will be in TEXT EDITOR Mode.

If you press F2, the screen will change to LADDER EDITOR Mode and if you
press F1, it will switch back to TEXT EDITOR Mode.

 63

Source files are saved under file extensions .CUL and .CUB, as TWO FILES.
If you need to backup or move source files, you must save BOTH of these
files.

When opening a file, you will only see .CUL files. (.CUB files are not
displayed, but they are in the same folder). When you open .CUL file,
CUBLOC STUDIO automatically opens CUB file.

The source code can only be saved on the PC. Source code downloaded to
the CUBLOC module can not be uploaded back to the PC.

When you press the RUN button (or
CTRL-R), Save, Compile, Download,
and Execute are automatically
processed. LADDER and BASIC both
are compiled with one RUN button.
If an error is found during
compilation, the cursor will relocate
to the error position.

IMPORTANT
All CUBLOC modules implement
code protection. By encrypting
the downloaded program data,
your code is safe from any
attempt to read part of the chip’s
memory and copy the source
code.

 64

Creating BASIC Code

You can create BASIC code as shown below. CUBLOC Text Editor is similar
to most text editors, and performs syntax highlighting of certain commands.

Shortcut Explanation
CTRL-Z UNDO
CTRL-O OPEN
CTRL-S SAVE
CTRL-C COPY
CTRL-X CUT
CTRL-V PASTE
CTRL-F FIND
CTRL-HOME Go to the very beginning
CTRL-END Go to the very end
CTRL-Y REDO

 65

Debugging

As shown in the above screenshot, the DEBUG command can be used to
monitor your BASIC program while it’s running. Be aware that you are not
allowed to use both Debugging and LADDER Monitoring at the same time.
You must remove Debug commands or comment them out with an
apostrophe before attempting to use LADDER Monitoring. Another option is
to use the command “Set Debug Off,” which will automatically ignore any
Debug statements.

 66

Menus

File Menu

Menu Explanation
New Create new file.
Open Open file.
Ladder Import Import Ladder Logic part of a CUBLOC program.
Save Save current file.
Save As Save current file under different name.
Save Object Save current program as an object file. Use this to

protect your source code. An object file is a strictly binary
format file so others cannot reverse engineer it. You can
use “Download from Object File” to download an object file
to CUBLOC. Create object files for internet downloading
with CuMAX or CuMAX Server.

Print Ladder Print Ladder Logic section only.
Print Basic Print Basic section only.
Print Setup Setup printer for printing Ladder Logic section.
Download from Object
file

Download an object file to the CUBLOC module.

Basic Section Switch to Basic Section for editing. (Or press F1).
Ladder Section Switch to Ladder Logic Section for editing. (Or press F2).
Last 4 Files Edited View last 4 files edited.
Exit Exit CUBLOC Studio

Device Menu
If a Const device statement does not exist in your source code, Device
Menu will create a Const device statement at the very beginning of your
source code. If it exists already, the Const device statement will simply be
replaced.

 67

Run Menu

Menu Explanation
Run Compile Basic and Ladder, download to CUBLOC

module if there are no errors, and restart the program
automatically. To disable automatic restart, please go
to Setup->Studio Option to change.

Reset Reset CUBLOC Module.
Ladder Monitor on Start Ladder Monitoring
BASIC Debug Terminal Open BASIC Debug Terminal Window.

This window opens automatically when there’s a
DEBUG command in the source code.

Time Chart Monitor View Time chart monitor window
Clear CUBLOC’s Flash
Memory

Clear CUBLOC’s Flash Memory.

Write enable fuse off This will turn off the download function for a CUBLOC
Core module to protect against noisy environments
where the flash memory can be affected. Once you
choose this menu, you will be unable to download new
programs to your CUBLOC module. You will be able to
download again after a new Firmware Download.

View Register Usage (After Compiling) View Register usage of Ladder Logic.
Check Syntax Check Syntax

Setup Menu

Menu Explanation
PLC Setup Wizard Automatic BASIC source code generation for Ladder

Logic
PC Interface Setup Setup the RS232 COM PORT for Download/Monitor.

Select COM1 through COM4.
Editor Environment
Setup

Setup Editor Environment options for BASIC text editor.

Environment Options CUBLOC Studio Options.
Firmware Download Download Firmware to CUBLOC CORE. Please use this

to download firmware to CUBLOC CORE manually.

 68

MEMO

 69

Chapter 4:
CUBLOC

BASIC
Language

IMPORTANT
You must declare the device being used before using BASIC or LADDER.
Below is an example of declaring CUBLOC CB220 module.

CONST DEVICE = CB220 ‘ Use CB220.

This should be the first line of your program. When this command is not
used, CB220 model will be chosen as default.

CONST DEVICE = CT1720 ‘ Use CT1720.

CONST DEVICE = CB280 ‘ Use CB280.

 70

CUBLOC BASIC Features

Interface to PC with RS232C Port
CUBLOC uses an RS232 port to interface with the PC. You also have the
option of using it to connect to a MAXPORT and use monitoring/downloading
via the internet.

CUBLOC BASIC supports functions and subroutines.
The user is able to create subroutines and functions to organize their
programs. Using subroutines and functions allows the user to copy & paste
code for common tasks into new programs, instead of starting everything
from scratch.

Function SUM(A As Integer, B As Integer) As Integer

 Dim RES As Integer

 RES = A + B

 SUM = RES

End Function

Calculations can be done within conditional
statements such as If, While, etc…

IF ((A + 1) = 100) THEN GOTO ABC

IF ((A + 1) = 100) AND (B / 100 = 20) OR C = 3 THEN GOTO ABC

Multi-dimension arrays are supported.
CUBLOC supports multi-dimensional arrays. Arrays with a maximum of 8
dimensions are supported (only 1 dimension is allowed for string arrays).

DIM A(100,10,20) AS BYTE

 71

Hardware RS232 Communication
CUBLOC uses hardware RS232 UART communication instead of software
RS232, allowing real-time processing to continue during RS232 operations.

Conditional Statements are supported.
CUBLOC BASIC supports SELECT CASE and DO…LOOP conditional
statements.

A graphic LCD library is provided.
CUBLOC provides a complete graphic LCD library for the Comfile GHLCD
product. Boxes, lines, circles, and other graphics commands are easily
implemented in a few lines of code.

Various Communication Protocols are supported.
CUNET : Display peripherals such as character LCDs
RS232 : up to 4 channels
MODBUS : built-in slave functions
I2C : I2C commands supported (I2CREAD, I2CWRITE)
SPI : SPI commands supported (SHIFTIN, SHIFTOUT)
PAD: Keypad, touchpad supported.

Advanced Basic Language Enhancements
#include support
#define support
#if..#ifdef..#endif conditional compile support
Incr, Decr commands: same function as C’s ++, --
Pointers allowed (PEEK, POKE, and MEMADR)
String Arrays (1-Dimension)

 72

Simple BASIC program

Below is an example of a simple BASIC program with a Do…Loop statement.

Dim A As Byte
Do
 Byteout 0, A
 A=A+1
Loop

This program outputs the increasing binary value of A to Ports P0-P7. The
next program uses a function to accomplish the same task:

Dim A As Byte
Do
 Byteout 0, A
 A=ADD_VALUE(A)
Loop
End

Function ADD_VALUE(B As Byte) As Byte
 ADD_VALUE = B + 1
End Function

By placing A=A+1 in a function, the user will be able to separate one big
program into small chunks. As you can see here, the main program ends
at the “End” command, and functions are added afterwards.

MAIN PROGRAM

SUB

End

SUB

Sub ProgramFUNCTION

 73

Sub and Function

For subroutines, you can either use Sub or Function. Sub does not return
any values, and Function does return values.

Sub SubName (Param1 As DataType [,ParamX As DataType][,…])
 Statements
 [Exit sub] ‘ Exit during sub-routine
End Sub

Function FunctionName (Param1 As DataType [,…])[As ReturnDataType]
 Statements
 [Exit Function] ‘ Exit during sub-routine
End Function

To return values using Function, simply store the final value as the name of
the Function as shown below:

Function ADD_VALUE(B As Byte) As Byte
 ADD_VALUE = B + 1 ‘ Return B+1.
End Function

DEMO PROGRAM

 74

Global and Local Variables

When you declare variables inside a Sub or Function, it is considered to be a
“Local” variable. The Local Variables are created upon call of the Sub or
Function and removed at exit. This means that the Local Variables will use
the Data Memory and then free it for other resources. Local Variables may
only be referred to or used inside the Sub or Function.

On the other hand, Global variables may be used in all parts of your code.

Global Variable

Local Variable Local Variable

Sub Program A Sub Program B

Main Program

Dim A As Integer ‘ Declare A as Global Variable
LOOP1:
 A = A + 1
 Debug Dp(A),CR ‘ Display A on Debug screen
 DELAYTIME ‘ Call Sub DELAYTIME
 Goto LOOP1
 End ‘ End of Main Program

Sub DELAYTIME()
 Dim K As Integer ‘ Declare K as Local Variable
 For K=0 To 10
 Next
End Sub

In the program above, “A” is declared as a Global Variable and “K” is
declared as a Local Variable. “A” can be used anywhere in your code but
“K” may only be used inside the subroutine DELAYTIME().

Arrays may not be used for Local Variables. Arrays must be declared as
Global Variables.

 75

Calling subroutines

Once the subroutine is created, you can use them like a regular command.

For a Sub, you do not need parenthesis around the parameters. For
multiple parameters, use a comma to separate them.

The example below shows how this is done:

DELAYTIME 100 ‘ Call subroutine
End

Sub DELAYTIME(DL As Integer)
 Dim K As Integer ‘ Declare K as Local Variable
 For K=0 To DL
 Next
End Sub

For a Function, you need parenthesis around the parameters. Parenthesis
are required even when there are no parameters.

Dim K As Integer
K = SUMAB(100,200) ‘Call subroutine and store return value in K
Debug Dec K,cr
End

Function SUMAB(A AS INTEGER, B AS INTEGER) As Integer
 SUMAB = A + B
End Function

 76

Subroutine Position

Subroutines must be created after the main program. To do this, simply
put “End” at the end of your main program as shown below:
(“End” is only required if you have subroutines)

Dim A As Integer
LOOP1:
 A = A + 1
 Debug DP(A),CR
 DELAYTIME
 Goto Loop1

 End ‘ End of main program

Sub DELAYTIME()
 Dim K As Integer
 For K=0 To 10
 Next
End Sub

Sub and Function subroutines come after the “End.” Gosub subroutines
must be within the main program like shown here:

 Dim A As Integer
 :
 :
 Gosub ABC
 :
ABC:
 :
 End

Sub DEF(B as Byte)
 :
 :
End Sub

Function GHI(C as Byte)
 :
 :
End Function

* The “End” command is used to differentiate between the BASIC main
program and the subroutines. END command used in Ladder Logic is to
indicate the end of Ladder Logic.

 77

Subroutine Parameters and Return Values

Functions may use any data type as parameter and return values:

Dim A(10) As Integer

Function ABC(A AS Single) as Single ‘ Return Single value
End Function

Function ABC(A AS String * 12) as String *12 ‘ Return String value
End Function

Function ABC(A AS long) ‘ Long value as a parameter
End Function ‘ When return value is not declared, Long

 ‘ will be used as return value.

Exceptions include using arrays as parameters (Do not do the following) :

Function ARRAYUSING(A(10) AS Integer) ‘ Arrays may not be used as
 ‘ parameters.
End Function

But you may use one element of an array as a parameter:

Dim b(10) as Integer
K = ARRAYUSING(b(10)) ‘ Use 10th element of array b as a parameter.

Function ARRAYUSING(A AS Integer) as Integer
End Function

All subroutine parameters are passed as values, not pointers. If the
parameter value is changed within a subroutine, it will not affect the actual
variable used as a parameter as shown below:

Dim A As Integer
Dim K As Integer
A = 100
K = ADDATEN(A)
Debug Dec? A, Dec? K,CR ‘ A is 100 and K is 110
End

Sub ADDATEN(V As Integer)
 V = V + 10 ‘ A does not change when V is changed.
 ADDATEN = V
End Sub

 78

In contrast, some languages include pointers or “Reference by Address,” in
which the actual Data Memory address is passed to the subroutine.
CUBLOC only supports “Call by Value.”

Too many characters in one line?
If you run out of room, you can use an underscore character (_) to go to
the next line as shown here:

ST = “COMFILE TECHNOLOGY”
ST = “COMFILE _
 TECHNOLOGY”

Comments
Use an apostrophe/singlequote (‘) to add comments. Comments are
discarded during compile, and will not take up extra Program Memory.

ADD_VALUE = B + 1 ‘ Add 1 to B.(Comment)

Nested subroutines
Nested subroutines are supported in CUBLOC.

A=FLOOR(SQR(F)) ‘ Do Floor() on SQR(F).

Colons
Colons cannot be used to append commands in CUBLOC BASIC, as is
possible in some other languages.

A=1: B=1 : C=1 ‘ Incorrect.

A=1 ‘ Correct.
B=1
C=1

 79

Variables
There are 5 types of variables in CUBLOC BASIC.

z BYTE 8 bit Positive Number, 0 to 255
z INTEGER 16 bit Positive Number, 0 to 65535
z LONG 32 bit Positive/Negative Number,

 (-2147483648 to +2147483647)
z SINGLE 32 bit Floating Point Number,

 (-3.402823E+38 to 3.402823E+38)
z STRING String, 0 TO 127 bytes

A Byte is an 8-bit positive number representing 0 to 255.
An Integer is a 16-bit positive number representing 0 to 65535.
A Long is a 32-bit positive or negative number representing
-2,147,483,648 to 2,147,483,647.
A Single is a 32-bit positive or negative floating point number representing
-3.402823x1038 to 3.402823 x 1038.

BYTE

WORD

LONG

*For storing negative numbers, please use LONG or SINGLE.
Use the DIM command for declaring variables as shown below:

Dim A As Byte 'Declare A as BYTE.
Dim B As Integer, C As Byte 'Comma may NOT be used.
Dim ST1 As String * 12 'Set String size for String.
Dim ST2 As String 'Set as 64 bytes (default).
Dim AR(10) As Byte 'Declare as Byte Array.
Dim AK(10,20) As Integer 'Declare as 2D Array
Dim ST(10) As String*10 'Declare a String Array

 80

DEMO PROGRAM

VAR Command (Same function as DIM)
VAR can be used in place of DIM to declare variables. Below are examples
of how to use VAR:

A Var Byte ' Declare A as BYTE.
ST1 Var String * 12 ' Declare ST1 as String of 12 bytes.
AR Var Byte(10) ' Declare AR as Byte Array of 10.
AK Var Integer(10,20) ' Declare AK as 2-D Integer Array
ST Var String *12 (10) ' Declare String Array

 81

String

A String size can be set up to 127 bytes. When the size is not set, a default
value of 64 bytes will be used as the String size.

Dim ST As String * 14 ' For maximum usage of 14 bytes
Dim ST2 As String ' Set as 64 byte String variable

When setting a String as 14 bytes, another byte is allocated by the
processor to store NULL. When storing “COMFILE TECHNOLOGY” in a 14
byte String, the last 4 characters (bytes) will not be stored.

Dim ST As String * 14
ST = “COMFILE TECHNOLOGY” ‘ “LOGY” is not stored

COMFILE TECHNO LOGY

COMFILE TECHNOLOGY

do not fit here

In CUBLOC BASIC, (“) must be used for String. An apostrophe (‘) may not
be used.

ST = “COMFILE “ TECHNOLOGY” ‘ (“) can not be used inside the String.
ST = “COMFILE ‘ TECHNOLOGY” ‘ (‘) can not be used inside the String.
ST = “COMFILE , TECHNOLOGY” ‘ (,) can not be used inside the String.

You can use CHR(&H22) to express (“) and CHR(&H27) to express (‘) and
CHR(&H2C) to express (,).

Example for printing to an LCD:

Print Chr(&H22),“COMFILE “ TECHNOLOGY”,Chr(&H22) ‘ (“)
Print Chr(&H27),“COMFILE “ TECHNOLOGY”,Chr(&H27) ‘ (‘) Apostrophe

 82

To connect multiple Strings, you can use a comma as shown below:

Print “ABC”,”DEF”,”GHI” ‘ Same as PRINT “ABCDEFGHI”.

Use CR for Carriage Return (Next Line).

Print “California”,CR ‘ Print California and go to the next line.

DEMO PROGRAM

 83

Merge Multiple Strings

To merge multiple strings together, use “+” as shown below:

Dim a1 As String * 30
Dim a2 As String * 30
a1 = "Comfile "
a2 = "Technology "
a1 = a1 + a2 + ",Inc"
Debug a1,cr

The above program will show “Comfile Technology, Inc” on the debug
screen.

DEMO PROGRAM

 84

How to Access Individual Characters within a
String

You can treat strings as a BYTE array. Simply append “_A” after the name
of your string variable as shown below:

DIM ST1 AS STRING * 12 ‘ ST1_A Array is created at the same time.
ST1 = “123”
ST1_A(0) = ASC(“A”) ‘ Store A in the first character of ST1.

When you declare Dim St1 as String * 12, St1_A(12) is also declared
automatically by the RTOS. The string and the array use the same
memory space. Whether you use the string or the array, you are still
accessing same memory location.

The example below shows how to convert blank characters to z.

With string arrays, you may not use this feature.

 Dim st(10) As String * 3

 85

About Variable Memory Space

In the CB220 and CB280, 2KB (2048 bytes) of data memory is available.
You may not use the whole data memory for variables. Part of the data
memory space is reserved for use by peripherals such as DISPLAY and the
RS232 buffers. An additional 80 bytes are used for the DEBUG command.

Subs, Functions, and interrupt routines use up data memory space when
running, especially if they declare local variables. Of the available 2048
bytes, about 1800 bytes can be used for global variables. Space must be
reserved for subroutines, reducing the memory available for global variables.
However, this will often save memory, as the local variables will be
destroyed after the subroutine completes, and the memory can be used by
another subroutine.

When the user creates buffers with SET DISPLAY or OPENCOM, the data
memory will lose the amount of memory dedicated to those buffers.

Initializing Memory

CUBLOC BASIC data memory is not cleared at power-up. The user should
initialize variables to zero or use RAMCLEAR command to clear the whole
memory.

Ramclear

The data memory will contain garbage values at POWER UP.

In the case of Battery-backed up modules, the variables will remember their
values after a power cycle (powering Off and On). If the content of the
variables is important, Ramclear should not be used.

 86

Arrays

CUBLOC BASIC supports up to 8 dimensional arrays, each dimension
allowed up to 65535 members.

DIM A(20) AS BYTE ‘ Declare A’s array size as 20
DIM B(200) AS INTEGER ‘ Declare Integer array
DIM C(200) AS LONG ‘ Declare Long array
DIM D(20,10) AS SINGLE ‘ 2-dimensional Single array
DIM ST1(10) AS STRING * 12 ‘ Declare String array

A(6)

A(3,6)

A(3,3,6)

Please make note of how much memory is used when using multi-
dimensional arrays.

‘ 13 * 10 = 130 Bytes of Data Memory
DIM ST1(10) AS STRING * 12

 ‘ 4*10 * 20 = 800 Bytes of Data Memory
DIM D(20,10) AS SINGLE

 87

Bits and Bytes modifiers

A variable’s bits and bytes can be accessed indivually by using the
commands shown below:

DIM A AS INTEGER
A.LOWBYTE = &H12 ‘ Store &H12 at A’s lowest byte

Bit
LOWBIT Variable’s bit 0
BIT0 to 31 Variable’s bit 0 through 31

 A.BIT2 = 1 ‘Make bit 2 of A 1.

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

LOWBIT

BYTE

BIT
7

BIT
31

BIT
6

BIT
30

BIT
5

BIT
29

BIT
4

BIT
28

BIT
3

BIT
27

BIT
2

BIT
26

BIT
1

BIT
25

BIT
0

BIT
24

LOWBIT

LONG

Nibble
A nibble is 4 bits. The user can access individual nibbles for ease of
processing certain types of data.

LOWNIB Variable’s NIBBLE 0
NIB0 to 7 Variable’s NIBBLE 0 to 7

 A.NIB3 = 7 ‘ Store 7 in Nibble 3 of A

NIB0NIB1NIB6NIB7
LOWNIB

LONG

 88

Byte
To specify certain bytes of a variable, the below names can be used.

LOWBYTE, BYTE0 BYTE 0 of Variable
BYTE1 BYTE 1 of Variable
BYTE2 BYTE 2 of Variable
BYTE3 BYTE 3 of Variable

A.BYTE1 = &HAB ‘Store &hab in byte 1 of A

BYTE3

LOWBYTE

BYTE2 BYTE1 BYTE0LONG

Word
To specify a certain Word of a variable, the below names can be used:
(A Word is 16 bits)

LOWWORD, WORD0 Word 0 of variable
WORD1 Word 1 of variable

A.WORD1 = &HABCD ‘Store &habcd in word 1 of A

WORD1

LOWWORD

WORD0LONG

* Tips: Need to access 5 bits of a variable?
Try “NewVariable = Variable AND 0x1F”.
This will mask the last 5 bits of the variable.

 89

DEMO PROGRAM

 90

Constants
Constants can be used to declare a fixed value within the program. This
essentially allows a number to be assigned a name, often improving
readability and debugging of the source code.

The command CONST can be used to declare constants in CUBLOC:

CONST PI AS SINGLE = 3.14159
CONST WRTTIME AS BYTE = 10
CONST MSG1 AS STRING = “ACCESS PORT”

When the constant is not given a type, the compiler will find an appropriate
type for it as shown below:

CONST PI = 3.14159 ‘ Declare as SINGLE
CONST WRTTIME = 10 ‘ Declare as Byte
CONST MYROOM = 310 ‘ Declare as Integer since it’s over 255.
CONST MSG1 = “ACCESS PORT” ‘ Declare as String

CON (Another CONST method)
The Command CON can be also used to declare constants in the following
way:

PI CON 3.14159 ‘ Declare as SINGLE.
WRTTIME CON 10 ‘ Declare as Byte
MYROOM CON 310 ‘ Declare as Integer
MSG1 CON “ACCESS PORT” ‘ Declare as String

 91

Constant Arrays...
In constant arrays, the user is able to store a list of numbers before the
program begins. A program requiring a large number of constant values
can be simplified as shown below:

Const Byte DATA1 = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 65, 64, 34)
I = 0
A = DATA1(I) ' Store 31 in A.
I = I + 1
A = DATA1(I) ' Store 25 in A.
Const Byte DATA1 = ("CUBLOC SYSTEMS")

String data can be stored in Byte constant arrays. The ASCII code of the
character is returned.

If DATA1(0) is read, ASCII code of ‘C’ is returned. Likewise if DATA1(1) is
read, ASCII code of ‘U’ is returned.

Integer and floating point numbers can be used as shown below:

CONST INTEGER DATA1 = (6000, 3000, 65500, 0, 3200)
CONST LONG DATA2 = (12345678, 356789, 165500, 0, 0)
CONST SINGLE DATA3 = (3.14, 0.12345, 1.5443, 0.0, 32.0)

For multiple-line constant arrays, the following ways can be used:
1)

CONST BYTE DATA1 = (31, 25, 102, 34, 1, 0, 0, 0, 0, 0, 65, 64, 34,
 12, 123, 94, 200, 0, 123, 44, 39, 120, 239,
 132, 13, 34, 20, 101, 123, 44, 39, 12, 39)

2)

CONST BYTE DATA2 = (31, 25, 102, 34, 1, 0, 65, 64, 34,_
 101, 123, 44, 39, 12, 39)

Strings can be used as shown below:

CONST STRING * 6 STRTBL = (“COMFILE”, “BASIC”, “ERROR”, “PICTURE”)

 92

Please set the size of the String to be greater than any of the members of
the constants.

Only 1 dimensional arrays are allowed for constants.

Comparison Array Constant Array
Storage Data Memory (SRAM) Program Memory (FLASH)
Stored Time During Program run During Download
Can be Changed Yes No
Purpose Changing Values Unchanging values
Power OFF Disappear Kept

DEMO PROGRAM

 93

Operators
When using mathematical and logical operators, the priority table below is
used to determine which operator is evaluated first.

Operator Explanation Type Priority
^ To the power of Math Highest
*,/,MOD Multiply, Divide, MOD Math
+,- Add, Subtract Math
<<, >> Left Shift, Right Shift Logic
<, >, <=, >= Less than, Larger than,

Less or Equal to , Larger or
Equal to.

Compare

=, <> Same, Different Compare
AND, XOR, OR AND, XOR, OR Logic Lowest

Please refer to the above table for checking priority of operator used. Within
each row above, the highest priority is calculated from the left to right. You
can use operators within conditional statements:

IF A+1 = 10 THEN GOTO ABC

Whole numbers and floating point numbers can be mixed in a calculation.
The final result is cast to the type of the assigned variable.

DIM F1 AS SINGLE
DIM A AS LONG
F1 = 1.1234
A = F1 * 3.14 ‘ A gets 3 even though result is 3.525456.

Please make sure to include a period(.) when using floating point numbers.
If your computer’s language type is set to one that uses commas(,) for
indicating decimals, floating point numbers will not be read correctly.

F1 = 3.0/4.0 ‘ Write 3/4 as 3.0/4.0 for floating values
F1 = 200.0 + FLOOR(A) * 12.0 + SQR(B) ‘200 as 200.0, 12 as 12.0…

AND, XOR, OR is used for logical operations and as Bit operators.

IF A=1 AND B=1 THEN C=1 ‘ if A=1 and B=1 …(Logical Operation)
IF A=1 OR B=1 THEN C=1 ‘ if A=1 or B=1…(Logical Operation)

A = B AND &HF ‘Set the upper 4 bits to zero. (Bit Operation)
A = B XOR &HF ‘Invert the lower 4 bits. (Bit Operation)
A = B OR &HF ‘Set the lower 4 bits to 1. (Bit Operation).

 94

Strings can be compared with the “=” sign. ASCII values are compared for
Strings.

DIM ST1 AS STRING * 12
DIM ST2 AS STRING * 12
ST1 = “COMFILE”
ST2 = “CUBLOC”
IF ST1=ST2 THEN ST2 = “OK” ‘ Check if ST1 is same as ST2.

Operators used in our BASIC language may differ slightly from common
math operators. Please refer to the below table:

Operator Math Basic Example
Add + + 3+4+5, 6+A

Subtract - - 10-3, 63-B
Multiply X * 2 * 4, A * 5
Division / 1234/3, 3843/A

To the power of 53 ^ 5^3, A^2
MOD Remainder of mod 102 mod 3

In CUBLOC BASIC, a slash (/) is used in place of division sign.

Please make sure to use parenthesis appropriately for correct calculations,
based on the order of operations table.

 95

Operator Priority

When multiple operators are used, the following operator priority is used:

1) Operator inside parenthesis
2) Negative Sign (–)
3) Exponent (^)
4) Multiplication, Division, Remainder (*, /, MOD)
5) Addition/Subtraction (+,-)
6) Bitwise Left Shift, Bitwise Right Shift (<<, >>)

DEMO PROGRAM

 96

Expressing Numbers

There are three possible ways to represent numbers in CUBLOC BASIC:
Binary, Decimal and Hexadecimal. The Binary and Hexadecimal
representations are useful for many control and processing needs. The
Decimal representation is the standard human readable format.

Examples:

Binary : &B10001010, &B10101,
 0b1001001, 0b1100

Decimal : 10, 20, 32, 1234

Hexadecimal : &HA, &H1234, &HABCD
 0xABCD, 0x1234 Å Similar to C
 $1234, $ABCD Å Similar to Assembly Language

 97

The BASIC Preprocessor

The BASIC preprocessor is a macro processor that is used automatically by
the compiler to transform your program before compilation. It is called a
macro processor because it allows you to define macros, which are brief
abbreviations for longer constructs.

In CUBLOC BASIC, a preprocessor similar to C language can be used.
Preprocessor directives like #include and #define can be used to include
files and process code before compiling.

#include “filename”
Include file in the source code. For files in the same directory as the source
file, you can do the following:

#INCLUDE “MYLIB.cub”

For files in other directories, you will need to include the full path name as
shown here:

#INCLUDE “c:\mysource\CUBLOC\lib\mylib.cub”

Using include files, you can store all of your common subroutines in a
separate file. In this case, please make sure to #include the subroutine file
at the very end of your program, after the “End” statement.

#define name constants
By using #define, you can assign names to values before compiling.

#define motorport 4

low motorport

For the example above, motorport will be compiled as 4. You can also use
CONST for similar tasks. However, CONST will use data memory; #define
will only use program memory.

CONST motorport = 4

low motorport

The following example uses #define for replacing a line of code:

 98

#define FLAGREG1 2

#define f_led FLAGREG1.BIT0

#define calc (4+i)*256

f_led = 1 ‘ Set FLAGREG1’s bit zero to 1.

IF f_led = 1 then f_led = 0 ‘ Make it easier to read.

j = calc ‘Calculations can be simplified

NOTE
#define will not differentiate uppercase and lowercase letters. They will all
be processed as uppercase characters. For example, #define ALPHA 0 and
#define alpha 0 are considered the same.

DEMO PROGRAM

 99

Conditional
A conditional is a directive that instructs the preprocessor to select whether
or not to include a part of code before compilation. Preprocessor
conditionals can test arithmetic expressions, or whether a name is defined
as a macro.

Here are some reasons to use a conditional.

� A program may need to use different code depending on the
module it is to run on. In some cases the code for one module
may be different on another module. With a preprocessing
conditional, a BASIC program may be programmed to compile on
any of CUBLOC/CUTOUCH modules without making changes to
the source code.

� If you want to be able to compile the same source file into two
different programs. One version might print the values of data for
debugging, and the other might not.

#if constant
#endif

The preprocessor directive #if will compare a constant declared with CONST
to another constant. If the #if statement is true, the statements inside the
#if…#endif block will be compiled, otherwise statements will be discarded.

Const Device = CB280

Delay 500
‘ Device only returns the decimal number
#If Device = 220
 Debug "CB220 module used!"
#endif

The above example illustrates how, depending on the type of
CUBLOC/CUTOUCH, you can decide to include a command in the final
compilation of your program. Using conditional directives, you will be able
to write applications for different CUBLOC/CUTOUCH modules with just one
source file.

 100

Using the preprocessor directive #elseif or #else, you can create more
complex #if…#endif blocks.

Const Device = CB220

Delay 500
‘ Device only returns the decimal number

#If Device = 220
 Debug "CB220 module used!"
#elseif device = 280
Debug "CB220 module used!"
#elseif device = 290
Debug "CB290 module used!"
#elseif device = 1720
Debug "CT1720 module used!"
#endif

#else may only be used ONCE in an #if statement. You may only compare
constants declared with the CONST command for the #if statements.

#ifdef name
#endif
When using #if to compare constants, you can use #ifdef to see if a
constant has been defined previously using #define or CONST.
If the constant has been defined previously, the statements inside the
#if…#endif block will be compiled, otherwise they will be discarded.

#define LOWMODEL 0
#ifdef LOWMODEL
 LOW 0
#endif

In the above example, since LOWMODEL is defined, the statement LOW 0 is
compiled.
#else #elseifdef may be used for more complex blocks as shown below:

#ifdef LOWMODEL
 LOW 0
#elseifdef HIGHMODEL
 HIGH 0
#else
 LOW 1
#endif

 101

#ifndef name
#endif
#ifndef is the opposite of the #ifdef directive. If a constant has not been
defined, the statements inside a #if…#endif block will be compiled,
otherwise the statements are discarded.

#define LOWMODEL 0
#ifndef LOWMODEL
 LOW 0
#endif

#elseifndef and #else may be used for more complex blocks as shown
below:

#ifndef LOWMODEL
 LOW 0
#elseifndef HIGHMODEL
 HIGH 0
#else
 LOW 1
#endif

Finally, the directives may be mixed as shown below:

#if MODELNO = 0
 LOW 0
#elseifdef HIGHMODEL
 HIGH 0
#else
 LOW 1
#endif

An exception is that #if may not be used inside another #if.

 102

To use LADDER ONLY

If you do not need to use BASIC, you can program in LADDER alone. But
you will need a few lines of BASIC to get started, as shown below:

Const Device = CB280 'Select device

Usepin 0,In,START 'Declare pins to use
Usepin 1,Out,RELAY

Alias M0 = MOTORSTATE 'Set Aliases
Alias M1 = RELAY1STATE

Set Ladder On 'Start Ladder.

Device model, aliases, and pin input and output status must be set in BASIC.
Ladder must be started in BASIC with SET LADDER ON command.

To use BASIC ONLY

Simply use BASIC! Ladder is off as default.

Set Ladder On ‘ Just don’t use this command.
Ladderscan ‘ And this one too.

 103

Interrupts
An interrupt can occur during the main program to process immediate
needs of some sort. The ON…GOSUB command can be used to set a new
interrupt. When that interrupt occurs, the main program stops execution
and jumps to the label designated by the previous ON…GOSUB command.
Once the interrupt routine in the label is finished, the RETURN command is
used to return back to the main program.

MAIN PROGRAM

INTERRUPT
ROUTINE

External key input can be activated and RS232 data can be received at any
moment. Since the main program cannot wait forever to receive these
inputs, we need interrupts. If a key is pressed or serial data is received
while the main program is running, an interrupt occurs and the main
program jumps to an interrupt routine.

While an interrupt routine is running, another interrupt request of the
same type is ignored. If an RS232 RECV interrupt occurs during execution
of an RS232 RECV interrupt routine, it will be ignored. On the other hand,
if an INT Edge interrupt occurs during execution of an RS232 RECV interrupt
routine, it will be executed immediately before returning to the RS232 RECV
interrupt routine.

Interrupt Type Explanation
On Timer Create interrupt within the set interval
On Int Create interrupt when external input is received.
On Recv Create interrupt when RS232 receives data
On LadderInt Create interrupt when Ladder Logic requests an interrupt
On Pad Create interrupt when Pad receives data

 104

More about Interrupts…
The CUBLOC and CUTOUCH have an RTOS which controls interrupt events.
This is slightly different from the microcontroller’s hardware interrupts.

1. When an interrupt A occurs, during the interrupt A, another interrupt A
cannot occur. But a different interrupt B can occur. Here A and B are
different types of interrupts. (e.g. On Timer and On Recv)

2. When an interrupt B occurs during the interrupt A, interrupt B will be
executed immediately and the Main Program will return to interrupt A to
finish.

3. At the end of your interrupt routine, please make sure to include a
Return command. Otherwise, your program can malfunction.

4. There is no limit on the number of interrupts and how long an interrupt

routine may be.

5. Delay and Pulsout commands can be used during an interrupt.
However, Delay and Pulsout time may be affected by other interrupts that
occur during their execution. To protect against such situations if timing is
important, please use Set Onglobal Off before calling Delay or Pulsout
command like shown here:

 Set Onglobal Off

 Delay 100 ‘ Delay command not affected

 Set Onglobal On

6. If no interrupt is required for your program, you can increase the
execution speed of the CUBLOC or CUTOUCH by setting all interrupts off
using the command Set Onglobal Off. By default, Set Onglobal is set to
On.

7. In case of On Recv, data received during an On Recv routine will simply
be stored in the receive buffer. Therefore the data will not be lost. After
the current On Recv interrupt routine is finished, if there’s new data in the
receive buffer, another On Recv interrupt will be called immediately. Bclr
command can be used in case the user does not want to process another
On Recv Interrupt.

8. If you declare an interrupt repeatedly, the last one called will be in effect.

 105

Pointers using Peek, Poke, and
Memadr
The following is an example that uses the EEWRITE command and the
EEREAD command to read floating point data:

 Const Device = CB280
 Dim f1 As Single, f2 As Single
 f1 = 3.14
 Eewrite 0,f1,4
 f2 = Eeread(0,4)
 Debug Float f2,cr

When you run this code, the debug window will show 3.00000 instead of
3.14. The reason is that the EEWRITE command automatically converts
floating point values to whole numbers.

In order to store floating point values, we can use Peek and Poke to read
the data directly:

 Const Device = CB280
 Dim F1 As Single, F2 As Single
 F1 = 3.14
 Eewrite 10,Peek(Memadr(F1),4),4
 Poke Memadr(F2),Eeread(10,4),4

 Debug Float F2,CR

The debug window will now show 3.14.

We use Memadr (F1) to find the memory address of F1 and then use the
Peek command to directly access the memory and write 4 bytes. We store
that value in EEPROM. Next, we use Memadr(F2) and Poke to read 4 bytes
directly.

Warning : Please use caution when using this command as pointers can
affect the whole program. Peek and Poke may only access data memory.

 106

Sharing Data

The CUBLOC has individual BASIC and LADDER data memory areas.

BASIC DATA MEMORY LADDER DATA MEMORY

P
M
C
T
D

Variable A
Variable B
Variable C
Variable D
Variable E
Variable F

LADDER data memory can be accessed from BASIC easily by using system
variables. Using these system variables, data can easily be read or written
to and from LADDER.

System Variable
(Array)

Access Units LADDER Register

_P Bits _P(0) to _P(127) P Register
_M Bits _M(0) to _M(511) M Register

_WP Words _WP(0) to _WP(7) P Register (Word Access)
_WM Words _WM(0) to _WM(31) M Register (Word Access)
_T Words _T(0) to _T(99) T Register (Timer)
_C Words _C(0) to _C(49) C Register (Counter)
_D Words _D(0) to _D(99) D Register (Data)

Registers P and M can be accessed in units of bits and Registers C, T, and D
can be accessed in units of Words. To access P and M Registers in units of
Words, use _WP and _WD. For example, _WP(0) represents P0 through
P15.

The following is an example program :

 _D(0) = 1234
 _D(1) = 3456
 _D(2) = 100
 FOR I = 0 TO 99
 _M(I) = 0
 NEXT
 IF _P(3) = 1 THEN _M(127) = 1

Accessing BASIC variables from Ladder is not possible, but you can use
Ladder interrupts to request that a BASIC routine change a Ladder variable.

 107

Use Ladder pins in BASIC using ALIAS command

The ALIAS command can be used to set aliases for Registers (except D)
used in LADDER. Both BASIC and LADDER may freely use these aliases.

Usepin 0,In,START
Usepin 1,Out,RELAY
Alias M0 = MOTORSTATE
Alias M1 = RELAY1STATE
Alias T1 = SUBTIMER

RELAY = 0 ' Set port 1 to LOW
MOTORSTATE = 1 ' Set M0 to 1. Same as _M(0) = 1.

A = RELAY1STATE ' Store M1 status in variable A.
B = SUBTIMER ' Store T1 status in variable B.

 108

MEMO

 109

Chapter 5:
CUBLOC

BASIC
Functions

 110

Math Functions

SIN, COS, TAN
Return Sine, Cosine, and Tangent values. CUBLOC uses radians as units.
Use SINGLE for most precise results.
A=SIN B ‘ Return Sine value.

A=COS B ‘ Return Cosine value.

A=TAN B ‘ Return Tangent value.

ASIN, ACOS, ATAN
Return Arc Sine, Arc Cosine, and Arc Tangent values. CUBLOC uses radians
as units. Use SINGLE for most precise results.
A=ASIN B ‘ Return Arc Sine value.

A=ACOS B ‘ Return Arc Cosine value.

A=ATAN B ‘ Return Arc Tangent value.

SINH, COSH, TANH
Return Hyperbolic Sine, Hyperbolic Cosine, and Hyperbolic Tangent values.
A=SINH B ‘ Return Hyperbolic Sine value of B.

A=COSH B ‘ Return Hyperbolic Cosine value of B.

A=TANH B ‘ Return Hyperbolic Tangent value of B.

SQR Return Square Root value.
A=SQR B ‘ Return square root value of B

EXP Return EX.
A=EXP X ‘Return EX.

LOG, LOG10 Return LOG or LOG10 value.
A=LOG B or A=LOG10 B

For the natural logarithm (Ln), simply do: A= Log(B)/Log(Exp(1))

 111

ABS Return Absolute value (for long type).
Dim A As Long, B As Long

B = -1234

A=ABS B ‘Return |B|.

Debug Dec A ‘Print 1234

FABS Return Absolute value (for Single type).
Dim A As Single, B As Single

B = -1234.0

A=FABS B ‘Return |B|.

Debug Float A ‘Print 1234.00

FLOOR Round down to the nearest whole number.
Dim A As Single, B As Single

B = 3.14

A=FLOOR B ‘FLOOR 3.14 gives 3.

Debug Float A ‘Print 3.0

 112

Type Conversion

Type conversion can be used to convert the variable to the desired
representation.

HEX
Converts the variable to a string representation of a hexadecimal value (16
bit). HEX8 means to convert to 8 decimal places. (1 to 8 can be used for
decimal places)

DEBUG HEX A ‘if A is 123ABC, 123ABC is printed
DEBUG HEX8 A ‘if A is 123ABC, bb123ABC is printed,
 ‘ b is a blank space in this case.
DEBUG HEX5 A ‘if A is 123ABC, 23ABC is printed, first character
 ‘is cut.

 113

DEC
Converts an integer variable to a string representation of a decimal (10 bit).
DEC8 means to convert to 8 decimal places. (1 to 11 can be used for
decimal places)

DEBUG DEC A ‘ If A is 1234, 1234 is printed.
DEBUG DEC10 A ‘ If A is 1234, bbbbbb1234 is printed,
 ‘ b is a blank space in this case.
DEBUG DEC3 A ‘ If A is 1234, 234 is printed, first
 ‘ character is cut

?
Include the name of the variable by using question mark (?). This question
mark can only be used with HEX or DEC.

DEBUG DEC ? A ‘ If A is 1234, “A=1234” will be printed.
DEBUG HEX ? A ‘ If A is ABCD, “A=ABCD” will be printed.
DEBUG HEX ? B ‘ If B is a sub-routine variable let’s say of
 ‘ sub-routine CONV, “B_@_CONV=ABCD”
 ‘ will be printed. (B is in CONV)

 114

FLOAT
Use FLOAT to convert floating point values to String.

Const Device = cb280
Dim F1 As Single
F1 = 3.14
Debug Float F1,cr ' Print "3.14000".

Dim ST As String * 15
ST = Float F1 ' First store in a String.
ST = Left(ST,3) ' Convert to 3 decimal places
Debug ST ' Print "3.14".

You can also store into a string before printing debug statements or
displaying to the LCD.

 115

String Functions
String functions are provided to assist the user in accessing and modifying
data within a string.

DP(Variable, Decimal Places, ZeroPrint)
The command DP converts a variable into a decimal string representation.

If ZeroPrint is set to 1, zeros are substituted for blank spaces.

Dim A as Integer
DEBUG DP(A,10,0) ‘ Convert A into decimal String representation.
 ‘ Set display decimal places to 10.
 ‘ If A is 1234, bbbbb1234 will be displayed.
 ‘ (b stands for blank spaces.)

DEBUG DP(A,10,1) ‘ If A is 1234, 0000001234 will be displayed.

 116

HP(Variable, Decimal Places, ZeroPrint)
The command HP converts a variable into hexadecimal string representation.
If ZeroPrint is set to 1, zeroes are substituted for blank spaces.

DEBUG HP(A,4,0) ‘ Convert A into HEX String representation
 ‘ Set display decimal places to 4.
 ‘ If A is ABC, bABC will be displayed.
 ‘ (b stand for blank spaces.)

DEBUG HP(A,4,1) ‘ If A is ABC, 0ABC will be displayed.

 117

FP(Value, Whole Number Digits,
Fractional Number Digits)

Convert floating point variables into a formatted string with user defined
whole and fractional number digits.

Dim A as Single

A = 3.14

DEBUG Float A ‘ 3.1400000 Prints all digits.

DEBUG FP(A,3,2) ‘ 3.14 Print user defined digits.

With the FP function, the user can control the number of digits to be used
for string data when using Debug commands or displaying to an LCD.

CUBLOC floating point values are stored in accordance to the IEEE724
format. The appearance of FP() and Float may differ but the value stored
in the variable will be the same.

 118

LEFT(Variable, Decimal Places)
Cut specified decimal places of the string from the left side and return the
value.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG LEFT(ST1,4) ‘ “CUBL” is printed.

RIGHT(Variable, Decimal Places)
Cut specified decimal places of the string from the right side and return the
value.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG RIGHT(ST1,4) ‘ “BLOC” is printed.

MID(Variable, Location, Decimal Places)
Cut specified decimal places starting from the location specified and return
the value.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG MID(ST1,2,4) ‘ “UBLO” is printed.

 119

LEN(Variable)
Return the length of the string specified.

DIM ST1 AS STRING * 12
ST1 = “CUBLOC”
DEBUG DEC LEN(ST1) ‘6 is printed since there are 6 characters in ST1.

STRING(ASCII code, length)
Create a specified length string with specified ASCII code value.

DIM ST1 AS STRING * 12
ST1 = STRING(&H41,5)
DEBUG ST1 ‘AAAAA is printed. &H41 is ASCII code for character A.

SPC(decimal places)
Create specified amount of blank space

DIM ST1 AS STRING * 12
ST1 = SPC(5)
DEBUG “A”,ST1,”A” ‘AbbbbbA is printed. Here, b is for blank space.

 120

LTRIM(String variable)
Cut all blank spaces on the left side of the string and return the value.

DIM ST1 AS STRING * 12
ST1 = “ COMFILE”
ST1 = LTRIM(ST1)
DEBUG “AAA”,ST1 ‘ AAACOMFILE is printed.

RTRIM(String variable)
Cut all blank spaces on the right side of the string and return the value.

DIM ST1 AS STRING * 12
ST1 = “COMFILE ”
ST1 = RTRIM(ST1)
DEBUG ST1,”TECH” ‘ COMFILETECH is printed.
 ‘ Blank spaces on the right are removed.

 121

VAL(String variable)
Return a converted numerical value of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER
ST1 = “123”
I = VAL(ST1) ‘ 123 is stored in variable I as a number.

VALSNG(String variable)
Return a converted floating point numerical value of the String.

DIM ST1 AS STRING * 12
DIM F AS SINGLE
ST1 = “3.14”
F = VALSNG(ST1) ‘ 3.14 is stored in variable F as a floating
 ‘ point number.

VALHEX(String variable)
Return a converted hexadecimal value of the String.

DIM ST1 AS STRING * 12

DIM I AS LONG

ST1 = “ABCD123”

I = VALHEX(ST1) ‘&HABCD123 is stored in variable I

 122

CHR(ASCII code)
Return the character of desired ASCII code.

DIM ST1 AS STRING * 12
ST1 = CHR(&H41)
DEBUG ST1 ‘ Print A,. &H41 is ASCII code of character A.

ASC(String variable or Constant)
Return the converted ASCII code of the first character of the String.

DIM ST1 AS STRING * 12
DIM I AS INTEGER
ST1 = “123”
I = ASC(ST1) ‘ &H31 is stored in variable I. ASCII code of 1
 ‘ is &H31 or 0x31.

Caution:
A variable must be used when using string functions.

DEBUG LEFT(“INTEGER”,4) ‘ A string by itself cannot be used.
ST1 = “INTEGER”
DEBUG LEFT(ST1,4) ‘ A string must be stored as a variable first.

 123

Chapter 6:
CUBLOC

BASIC
Statements &

Library

 124

Adin()
Variable = ADIN (Channel)
 Variable : Variable to store results (No String or Single)
 Channel : AD Channel Number (not I/O Pin Number)

CUBLOC has 10bit ADCs and 16bit PWMs. The user can use an ADC to
convert analog to digital signals, or use a PWM to convert digital to analog
signal.

The ADIN command reads the analog signal value and stores the result in a
variable. Depending on the model, the number of ADC ports may vary.
For the CB280, there are 8 AD ports (P24 to P31). The ADC port must be
set to input before use.

When a voltage between 0 and AVREF is applied, that voltage is converted
to a value from 0 to 1023. AVREF can accept voltage between 2V to 5V.
The default reference is 5V. If the user inputs 3V to AVREF, voltage
between 0 and 3V is converted to a value between 0 and 1023.
(*Note: CB220 AVREF is fixed to 5V)

Return value

Input voltage0V
0

1023

5V

Dim A As Integer
Input 24 ‘ Set port to input.
A=Adin(0) ‘ Do a A/D conversion on channel 0 and
 ‘ store result in A

 125

The CB220/CB320 and CB280/CB380 ADC ports are shown below:

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

AD INPUT
PORT

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

AD INPUT

PORT

CB220
CB280

Please refer to the table below for ADC channels.

 CB220

CB320
CB280
CB380

CB290 CT17xx CB405

A/D channel 0 I/O 0 I/O 24 I/O 8 I/O 0 I/O 16
A/D channel 1 I/O 1 I/O 25 I/O 9 I/O 1 I/O 17
A/D channel 2 I/O 2 I/O 26 I/O 10 I/O 2 I/O 18
A/D channel 3 I/O 3 I/O 27 I/O 11 I/O 3 I/O 19
A/D channel 4 I/O 4 I/O 28 I/O 12 I/O 4 I/O 20
A/D channel 5 I/O 5 I/O 29 I/O 13 I/O 5 I/O 21
A/D channel 6 I/O 6 I/O 30 I/O 14 I/O 6 I/O 22
A/D channel 7 I/O 7 I/O 31 I/O 15 I/O 7 I/O 23
A/D channel 8 I/O 32
A/D channel 9 I/O 33
A/D channel 10 I/O 34
A/D channel 11 I/O 35
A/D channel 12 I/O 36
A/D channel 13 I/O 37
A/D channel 14 I/O 38
A/D channel 15 I/O 39

The ADIN command only converts once upon execution. TADIN is a macro
that returns the average of 10 conversions, giving the user more precise
results. If you need more precision rather than speed, we recommend the
use of TADIN instead of ADIN. It is also possible to create your own
averaging or filtering code for better precision.

 126

Alias
ALIAS Registername = AliasName

Registername : Register name such as P0, M0, T0 (Do not use D area)
AliasName : An Alias for the Register chosen (up to 32 character)

Aliases may be chosen for Ladder registers. Aliases can help the user write
code that is easier to read and debug.

Alias M0 = Rstate
Alias M0 = Kstate
Alias P0 = StartSw

 127

Bcd2bin
Variable = BCD2BIN(bcdvalue)
 Variable : Variable to store results (Returns LONG)
 bcdvalue : BCD value to convert to binary

This command converts a BCD (Binary Coded Decimal) number into a
normal binary encoded number as used for all calculations in CUBLOC Basic.
BCD is often encountered when interfacing to real-time clock chips.

Dim A As Integer
A=Bcd2bin(&h1234)
Debug Dec A ‘ Print 1234

 128

Bclr
BCLR channel, buffertype
 channel : RS232 Channel (0 to 3)
 buffertype : 0=Receive, 1=Send, 2=Both

Clear the specified RS232 channel’s input buffer, output buffer, or both
buffers. Use this command if your code is about to receive data and there
may be unneeded data already in the buffer.

Bclr 1,0 ‘ Clear RS232 Channel 1’s rx buffer
Bclr 1,1 ‘ Clear RS232 Channel 1’s tx buffer
Bclr 1,2 ‘ Clear RS232 Channel 1’s rx & tx buffers

 129

Beep
BEEP Port, Length
 Port : Port number (0 to 255)
 Length : Pulse output period (1 to 65535)

The BEEP command is used to create a beep sound. A piezo or a speaker
can be connected to the specified port. A short beep will be generated.
This is useful for creating button-press sound effects or alarm sounds.
When this command is used, the specified port is automatically set to
output.

BEEP 2, 100 ‘Output BEEP on P2 for a period of 100

PIEZO

 130

Bfree()
Variable = BFREE(channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0 to 3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

This function will return the number of free bytes in a receive buffer or a
send buffer. When sending data, this command can be used to avoid
overflowing the buffer. When receiving data, this command can help the
program wait for a specified amount of data before taking action.

DIM A AS BYTE
OPENCOM 1,19200,0, 100, 50
IF BFREE(1,1)>10 THEN
 PUT “TECHNOLOGY”
END IF

 If buffer size is set to 50, up to 49
free bytes can be returned. The
function will return 1 less than the
set buffer size when buffer is empty.

 131

Bin2bcd
Variable = BIN2BCD(binvalue)
 Variable : Variable to store results (Returns Long)
 binvalue : Binary value to be converted

This command BIN2BCD converts a binary value to BCD (Binary Coded
Decimal) representation. BCD is a way of expressing values as decimals.

For example. 3451 in binary is as shown below:

3 4 5 1

0 D 7 B
0 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1

The below is 3451 converted to BCD code. As you can see, each 4 bits
represent one of the digits.

3 4 5 1

3 4 5 1
0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1

This command is useful when the user needs to convert a variable for a
device such as a 7 segment display, or a real-time clock.

 i = 123456
 j = bin2bcd(i)
 Debug Hex j ‘ Print 123456

 132

Blen()
Variable = BLEN(channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0 to 3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

This function Blen() returns current number of bytes of data in the specified
RS232 Channel’s buffer. If the buffer is empty, 0 will be returned. When
receiving data, this function can be used to check how much data has been
received before using GET or GETSTR to read the data received.

If the receive buffer is full, it will not be able to receive any more data. To
avoid these situations, receive interrupts should be used or the buffer size
should be increased.

Dim A As Byte
Opencom 1,19200,0,100,50
On Recv1 DATARECV_RTN ' When data is received through
 ' RS232, jump to DATARECV_RTN
Do
Loop ' infinite loop

DATARECV_RTN:
 If Blen(1,0) > 0 Then ' If there is at least 1 byte...
 A = Get(1) ' Read 1 Byte
 End If
Return ' End Interrupt routine

 133

Bytein()
Variable = BYTEIN(PortBlock)
 Variable : Variable to store results (No String or Single)
 PortBlock : I/O Port Block Number (0 to 15)

Read the current status of an I/O Port Block (a group of 8 I/O ports). Port
0 to 7 is Block 0 and Port 8 to 15 is Block 1. Depending on the model of
CUBLOC, the Port Block numbers for various port groups can vary. When
using this command, all I/O Ports within the Port Block are set to input and
the received input value is stored in a variable.

DIM A AS BYTE
A = BYTEIN(0) ‘Read from Port Block 0 and store in variable A.

The CB220 and CB280 Port Block groupings are shown below. Please refer
to the pin/port tables for the specific CUBLOC module you are using.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

BLOCK 0 BLOCK 1

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

0 2
3

45
1

 134

Byteout
BYTEOUT PortBlock, value
 PortBlock : I/O Port Block Number (0 to 15).
 value : Value to be output (0 to 255).

Outputs a value to a Port Block (a group of 8 I/O ports, refer to Bytein).
When using this command, all I/O Ports within the Port Block are set to
output and the binary value is applied to the ports.

Byteout 1,255 ‘ Output 255 to Port Block 1.
 ‘ Ports 8 through 15 are set to HIGH.

* I/O Port 1 only supports input. Therefore, BYTEOUT 0 will not set Port 1
to Output.

 135

CheckBf()
Variable = CheckBf(channel)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel (0 to 3)

The command CheckBf() can be used to check the current data in the
receive buffer without modification. It will not erase the data after reading,
unlike the GET command. Only 1 byte can be read at a time.

A = Checkbf(1) ‘Check current data in the receive buffer

 136

Compare
COMPARE channel, target#, port, targetstate
 Channel : High Counter channel
 Target# : Target # of Pulses (CH0: 0 to 65535, CH1: 0 to 255)
 Port : Output Port (DO NOT USE Input-only Ports)
 Targetstate : Target Output Port State

COUNT

COMPARE

When high counter value reaches a
set target point, the processor will set
an I/O Port to Low or High.

If Targetstate is set to 1 and the Target number of pulses have been
received, the Port will output logic HIGH. Likewise, if the Targetstate is set
to 0 and the Target number of pulses have been received, the Port will
output logic LOW.

Channel Compare Range
HCOUNT Channel 0 0 to 255
HCOUNT Channel 1 0 to 65535

The high counter itself supports up to 32-bits, but the COMPARE command
is limited since this command was designed to not affect the overall
multitasking of the CUBLOC main processor. Note: For channel 0, please
use the Set Count0 On command before using the Compare command.

Dim i As Integer

Set Count0 On

Compare 0,10,61,1

Do

 i = Count(0)

 Debug Goxy,0,0,dec4 i,Cr

 Delay 100

Loop

The above uses High Counter Channel
0 with target # of 10. When the
Counter 0 value becomes 11, Port 61
will ouput logic HIGH.

 137

Count()
Variable = COUNT(channel)
 Variable : Variable to store results. (No String or Single)
 Channel : Counter Channel number (0 to 1)

Return the counted value from the specified Count Channel. Please set the
Counter Input Ports (refer to the pin/port table for the appropriate CUBLOC
module) to input before use of this command. Up to 32 bit values can be
counted (Byte, Integer, Long). Maximum pulse frequency is 500kHz.

CUBLOC’s counter is hardware driven, meaning it runs independently from
the main program. It is able to count in real-time. No matter how busy
the CUBLOC processor gets, the counter will count reliably.

The CUBLOC has 2 Counter inputs. Counter Channel 0 uses the same
resources as PWM0...PWM2; you cannot use both at the same time.
However, Counter Channel 1 can be used while PWM Channel 0 is running.
To use Counter Channel 0, the SET COUNT0 On command must be used
beforehand. Counter Channel 1 requires no additional settings.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

COUNT 1
COUNT 0

Dim R As Integer
Input 15 ' Set port 15 as input. (Counter Channel 1)
R = Count(1) ' Read current Counter value.

Set Count0 On ' Activate Counter Channel 0
 ' (PWM0,1,2 becomes deactivated.)
Input 14 ' Set port 14 as input (Counter Channel 0)
R = Count(0) ' Read current Counter value.

 138

Since Counter 0 uses the same resources as PWM as shown below, please
be careful not to use PWM0… at the same time.

PWM0

COUNTER 0

TIMER A

TIMER B

PWM1

PWM2

PWM3

PWM4

PWM5

‘
‘ Measure frequency from pulse output PWM 0 channel
‘
Const Device = CB280
Dim A as Integer
Input 15
Low 5
Freqout 0,2000
Low 0
On Timer(100) Gosub GetFreq
Do
Loop

GetFreq:
A = Count(1)
Debug goxy,10,2
Debug dec5 A
Countreset 1
Reverse 0
Return

 139

Countreset
COUNTRESET channel
 Channel : Counter Channel (0 to 1)

Reset the specified Counter Channel to 0.

Countreset 0 ‘Clear Channel 0
Countreset 1 ‘Clear channel 1

 140

Dcd
Variable = DCD source
 Variable : Variable to store results. (No String or Single)
 Source : source value

The DCD command is the opposite of the NCD command. It will return the
bit position (starting at LSB bit 0) of the highest bit that is a 1.

I = DCD 15 ‘ Result is 3 since 15 = 0b00001111

 141

Debug
DEBUG data
 data : data to send to PC

CUBLOC supports RS232 debugging with the DEBUG command. The user
can insert DEBUG commands as desired within a program. The result of
the DEBUG command is displayed on the DEBUG Terminal, which will
automatically appear after the program is downloaded from Cubloc Studio.

DIM A AS INTEGER

A = 123

DEBUG DEC A

Use DEC or HEX to convert numbers to strings for the Debug command. If
you do not use DEC or HEX, numbers will be printed as raw ASCII, usually
providing no useful output.

If you insert a question mark (?) before DEC or HEX, the variable’s name
will be printed before the value.

DEBUG DEC? A,CR

DEBUG HEX? A,CR

 142

You can also specify the number of characters to print.

DEBUG HEX8 A

The HEX command will accept 1 through 8. HEX8 will print as an 8 digit
hexadecimal number. The DEC command will accept 1 through 10.

You are free to mix strings and numbers:

DEBUG “CHECK VALUE “ HEX? A, CR

The DEBUG command is useful for printing out strings and numbers in a
user-friendly format. During execution of CUBLOC BASIC program, when
DEBUG command is encountered, the resulting values are immediately
displayed on the DEBUG Terminal.

 143

If you insert a DEBUG command into a program and the DEBUG Terminal
displays those values during execution, it proves that the program has
executed to that point. By using DEBUG commands, you will be able to
detect the location of bugs in your program, and monitor variables change
in real time.

If you enter characters in the upper part of the Debug Terminal, it will be
sent to the DOWNLOAD port of CUBLOC. This can be used for interactive
communication with the CUBLOC.

Warning
The DEBUG command may not be used while monitoring in Ladder Logic.
Likewise, Ladder Logic monitoring can not be used while debugging using
DEBUG commands.

The following is a chart of commands that can be used with the DEBUG
command. You can control the DEBUG screen like an output screen or LCD.

Command Code Explanation Example Usage
CLR 0 Clear Debug screen Debug CLR
HOME 1 Move cursor to the upper left corner of

the Debug screen
Debug HOME

GOXY 2 Move cursor to X, Y Debug GOXY, 4, 3
CSLE 3 Move cursor one to the left.
CSRI 4 Move cursor one to the right
CSUP 5 Move cursor one up
CSDN 6 Move cursor one down
BELL 7 Make beeping sound
BKSP 8 BACK SPACE
LF 10 LINE FEED Debug “ABC”,LF
CLRRI 11 Erase all characters on the right of

cursor to the end of line.

CLRDN 12 Erase all characters on the bottom of
cursor

CR 13, 10 Carriage Return (go to next line) Debug “ABC”,CR

You must use above commands within a DEBUG command:

 Debug Goxy,5,5,Dec I
 Debug Clr,”TEST PROGRAM”

 144

Decr
DECR variable
 Variable : Variable to decrement. (No String or Single)

Decrement the variable by 1.

Decr A ‘ Decrement A by 1.

 145

Delay
DELAY time
 Time : interval variable or constant (up to Long type)

Delays program execution for the specified time in milliseconds. The Delay
command is best used for small amounts of time. We recommend not
using it for time measurements and other time-critical applications, as the
actual delay time can vary depending on other tasks running.

Delay 10 ‘ Delay about 10 ms.
Delay 200 ‘ Delay about 200 ms.

Delay is pre-made system’s sub program.

 sub delay(dl as long)
 dl1 var long
 dl2 var integer
 for dl1=0 to dl
 for dl2=0 to 1

 nop
 nop
 nop

 next
 next
 end sub

 146

Do...Loop
DO...LOOP will loop the enclosed commands unless DO WHILE or DO UNTIL
is used to set a condition in which the loop can be terminated. An EXIT DO
command can also be used within the DO...LOOP to exit from the loop.

Do
 Commands
Loop

Dim K As Integer
Do
 K=Adin(0) ‘Read AD input from channel 0
 Debug Dec K,Cr
 Delay 1000
Loop

In the above example, the program will loop infinitely inside DO and LOOP.
An EXIT DO or GOTO command must be used to get out of the infinite loop.

Do While [Condition]
 Commands
 [Exit Do]
Loop

Do
 Commands
 [Exit Do]
Loop While [Condition]

DO..WHILE will infinitely loop until the condition in WHILE is met.

Do Until [Condition]
 Commands
 [Exit Do]
Loop

Do
 Commands
 [Exit Do]
Loop Until [Condition]

DO..UNTIL will infinitely loop until condition in UNTIL is met.

 147

DEMO PROGRAM

 148

Dtzero
DTZERO variable
 Variable : Variable for decrement. (No String or Single)

Decrement the variable by 1. When the variable reaches 0, the variable is
no longer decremented. This differs from the Decr command, which will
underflow the variable and wrap around to the highest value for the variable
type chosen.

DTZERO A ‘ Decrement A by 1.

 149

EAdin()
Variable = EADIN (mux)
 Variable : Variable to store results (No String or Single)
 mux : AD input Port Combination MUX (0 to 21)

This command can be used for a more precise analog conversion. The
CUBLOC has an internal operational amplifier module. When using the
ADIN command, the opamp is not used.

ADC

OP AMP.

Please set the MUX value by following the chart below:

MUX OPAMP + OPAMP - Multiplier Resolution
0 ADC0 ADC0 10 8 Bits
1 ADC1 ADC0 10 8 Bits
2 ADC0 ADC0 200 7 Bits
3 ADC1 ADC0 200 7 Bits
4 ADC2 ADC2 10 8 Bits
5 ADC3 ADC2 10 8 Bits
6 ADC2 ADC2 200 7 Bits
7 ADC3 ADC2 200 7 Bits
8 ADC0 ADC1 1 8 Bits
9 ADC1 ADC1 1 8 Bits
10 ADC2 ADC1 1 8 Bits
11 ADC3 ADC1 1 8 Bits
12 ADC4 ADC1 1 8 Bits
13 ADC5 ADC1 1 8 Bits
14 ADC6 ADC1 1 8 Bits
15 ADC7 ADC1 1 8 Bits
16 ADC0 ADC2 1 8 Bits
17 ADC1 ADC2 1 8 Bits
18 ADC2 ADC2 1 8 Bits
19 ADC3 ADC2 1 8 Bits
20 ADC4 ADC2 1 8 Bits
21 ADC5 ADC2 1 8 Bits

 150

The EADIN port must be set to input beforehand.

Dim J As Long
Input 24 'Set the port to input (Use port 24,25 for CB280)
Input 25
Do
 j = Eadin(8) ' AD Conversion from AD0 and Ad1, use OPAMP, 1
 Locate 0,0
 Print hex5 J,cr ' Print results to LCD
 Delay2 500 ' Little Delay
Loop
End

Sub Delay2(DL As Integer)
 Dim I As Integer
 For I = 0 To DL
 Next
End Sub

The EADIN command does not support the full 10-bit resolution
that the regular ADIN supports. When using 1X and 10X
multipliers, 8-bit resolution is used. When using 8X and 200X
multipliers, 7-bit resolution is used.

WARNING: The OPAMP electrical characteristics limit the detectable
input range to 0.5V…4.5V. With the CB405, the EADIN command
can only be used with ADC channels 0 through 7.

Please refer to the following table for ADC channels and corresponding port
numbers for your CUBLOC or CUTOUCH:

Channel CB220 CB280 CB290 CT17X0 CB405
ADC0 I/O 0 I/O 24 I/O 8 I/O 0 I/O 16
ADC1 I/O 1 I/O 25 I/O 9 I/O 1 I/O 17
ADC2 I/O 2 I/O 26 I/O 10 I/O 2 I/O 18
ADC3 I/O 3 I/O 27 I/O 11 I/O 3 I/O 19
ADC4 I/O 4 I/O 28 I/O 12 I/O 4 I/O 20
ADC5 I/O 5 I/O 29 I/O 13 I/O 5 I/O 21
ADC6 I/O 6 I/O 30 I/O 14 I/O 6 I/O 22
ADC7 I/O 7 I/O 31 I/O 15 I/O 7 I/O 23

 151

Eeread()
Variable = EEREAD (Address, ByteLength)
 Variable : Variable to store result (No String or Single)
 Address : 0 to 4095
 ByteLength : Number of Bytes to read (1 to 4)

Read data from the specified address in EEPROM.

DIM A AS INTEGER
DIM B AS INTEGER
A = 100
EEWRITE 0,A,2 ‘ Store A in Address 0.
B = EEREAD(0,2) ‘ Read from Address 0 and store in B.

 152

Eewrite
EEWRITE Address, Data, ByteLength
 Address : 0 to 4095
 Data : Data to write to EEPROM (up to Long type values)
 ByteLength : Number of Bytes to write (1 to 4)

Store data in the specified address in EEPROM. This is very useful for
storing configuration or calibration data.

Dim A As Integer
Dim B As Integer
A = 100
Eewrite 0,A,2 ' Store A in Address 0.
B = Eeread(0,2) ' Read from Address 0 and store in B.

When writing to the EEPROM, it takes about 3 to 5 milliseconds.
When reading from the EEPROM, it takes less than 1 millisecond.
There is a physical limit of around 100,000 writes to each location within the
EEPROM.

If you are using EEPROM for data acquisition or data that requires a lot of
writes, we recommend using a module with battery-backup memory instead,
such as the CB290 or CB405. One alternative is an RS232 CF or SD
memory interface module.

The following is a table showing comparisons betweens SRAM and EEPROM.

Type Battery Backup SRAM EEPROM
Life of Data Depends on battery capacity 40 Years
Maximum Writes Infinite About 100,000
Writing Time 0 ms 3 to 5 ms
General use Store often-used variable

information over a power
outage. Example: daily
production counter.

Important data that needs to
survive even a backup battery
failure. Example: Product
Serial Number

 153

Ekeypad
Variable = EKEYPAD(portblockIn, portblockOut)
 Variable : Variable to store results (Returns Byte)
 PortblockIn : Port Block to receive input (0 to 15)
 PortblockOut : Port Block to output (0 to 15)

The command EKEYPAD extends KEYPAD to read up to 64 key inputs. Two
Port Blocks are used to read a keypad matrix up to 8x8 lines. The input
Port Block and the output Port Block must be selected separately.

A pullup resistor (2.2K to 10K) should be connected between each input
port and 5V. For ports not used within the input Port Block, a pullup resistor
must be used. Unused ports may not be used for other purposes when
using this command.

Ports not used within the output Port Block can be left unconnected.
Unused ports may not be used for other purposes. The following is an
example showing Port Block 0 as input and Port Block 1 as output:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

 154

For...Next
FOR…NEXT will loop the commands within itself for a set number of times.

For Variable = Starting Value To Ending Value [Incremental Step]

 Commands

 [Exit For]

Next

In the below example, an Incremental Step is not set. The FOR…NEXT loop
will increment 1 every loop by default.

Dim K As Long
For K=0 To 10
 Debug Dp(K),CR
Next

For K=10 To 0 Step –1 ‘ Negative Step, step from 10 to 0.
 Debug Dp(K),CR
Next

An EXIT FOR command can be used within the FOR…NEXT loop to exit at
any time.

For K=0 To 10
 Debug Dp(K),CR
 If K=8 Then Exit For ‘ If K equals 8 exit the FOR…NEXT loop.
Next

When choosing a variable to use for the FOR…NEXT loop, please make sure
the chosen variable is able to cover the desired range. Byte variables can
cover 0 to 255. For larger values, a variable with larger range must be
chosen.

Dim K As Byte
For K=0 To 255
 Debug Dp(K),CR
Next

When using a negative STEP, please choose a LONG variable type if the loop
will go below 0.

Dim LK As Long
For LK=255 To 0 Step –1 ‘This will reach -1 as last step
 Debug Dp(LK),CR
Next

 155

DEMO PROGRAM

Const Device = CB280

Dim A As Integer

For A=1 To 9

 Debug "3 * "

 Debug Dec A

 Debug " = "

 Debug Dec 3*A,Cr

Next

Const Device = CB280

Dim A As Integer, B As Integer

For A=2 To 9

 For B=1 To 9

 Debug Dec A," * "

 Debug Dec B

 Debug " = "

 Debug Dec A*B,Cr

 Next

 Debug Cr

Next

 156

Freepin
FREEPIN I/O
 I/O : I/O PORT Number

This command will return an I/O port to BASIC control, if it has previously
been set to a LADDER port with Usepin.

 157

Freqout
FREQOUT Channel, FreqValue
 Channel : PWM Channel (0 to 15)
 FreqValue : Frequency value between 1 and 65535

Output the desired frequency to the desired PWM channel. Please make
sure to specify the PWM channel, not the I/O port number. For the CB220
and CB280, ports 5, 6, and 7 are PWM Channel 0, 1, and 2, respectively.

The following is a basic chart showing several example FreqValues and the
corresponding frequencies. The highest possible frequency is set by 1 and
the lowest possible frequency is set by 65535. A value of 0 does not
produce any output.

FreqValue Frequency FreqValue Frequency
1 1152 KHz 200 11.52 KHz
2 768 kHz 1000 2.3 KHz
3 576 KHz 2000 1.15 KHz
4 460.8KHz 3000 768 Hz
5 384 KHz 4000 576 Hz
10 209.3 KHz 10000 230 Hz
20 109.7 KHz 20000 115.2 Hz
30 74.4 KHz 30000 76.8 Hz
100 22.83 KHz 65535 35.16 Hz

You can calculate FreqValue with the following formula:

FreqValue = 2304000 / Desired Frequency

Before using this command, please set the specified PWM Port to output
mode and set to a High or Low state. To stop the frequency output, you
can use the command PWMOFF.

The following is an example:

Const Device = cb280
Dim i As Integer
Low 5 ‘ Set Port 5 to low and output.
i = 1
Freqout 0,10 ‘ Produce a 209.3Khz wave
Do ‘ Infinite loop
Loop

 158

Since Freqout uses the same resources as PWM, there are some restrictions.
PWM Channels 0, 1, and 2 use the same timer. If PWM Channel 0 is used
for a Freqout command, PWM Channels 0, 1, and 2 cannot be used for a
PWM command.

Likewise, PWM Channels 3, 4, and 5 are linked. If you use Freqout on PWM
Channel 3, PWM Channels 3, 4, and 5 cannot be used for a PWM command.

You can product different frequencies on PWM Channel 0 and 3.

To sum up, the user may produce two different frequencies at one time,
and when using the Freqout command on a channel, a PWM command
cannot be used on the same channel.

The following is a chart that correlates FreqValue to musical notes:

Note Octave 2 Octave 3 Octave 4 Octave 5
A 20945 10473 5236 2618
Bb 19770 9885 4942 2471
B 18660 9330 4665 2333
C 17613 8806 4403 2202
Db 16624 8312 4156 2078
D 15691 7846 3923 1961
Eb 14811 7405 3703 1851
E 13979 6990 3495 1747
F 13195 6597 3299 1649

Gb 12454 6227 3114 1557
G 11755 5878 2939 1469
Ab 11095 5548 2774 1387

Freqout 0,5236 ‘ Note A in Octave 4(440Hz)
Freqout 0,1469 ‘ Note G in Octave 5

 159

Get()
Variable = GET(channel, length)
 Variable : Variable to store results (Cannot use String, Single)
 channel : RS232 Channel (0 to 3)
 length : Length of data to receive (1 to 4)

Read data from the RS232 port. The command Get() actually reads from
the receive buffer. If there is no data in the receive buffer, it will quit
without waiting for data and return 0. The command BLEN() can be used
to check if there is any data in the receive buffer before reading trying to
read data.

The length of data to be read must be between 1 and 4. For receiving a
Byte type data, it would be 1. For receiving a Long type data, it would be 4.
For larger amounts of data, please use GETSTR() or GETA().

TIPS
Use SYS(1) after GET() or GETSTR() to verify how much data was actually
read. If 5 bytes were received and only 4 bytes got verified, 1 byte was lost.

Const Device = cb280
Dim A as Byte
Opencom 1,115200,3,50,10
On Recv1 Gosub GOTDATA
Do
 Do while In(0) = 0
 Loop ‘ Wait until press button (Connect P0)
 Put 1,asc(“H”),1
 Put 1,asc(“E”),1
 Put 1,asc(“L”),1
 Put 1,asc(“L”),1
 Put 1,asc(“O”),1
 Put 1,13,1 ‘ HELLO + Chr (13) + Chr (10)
 Put 1,10,1
 Do while In(0) = 1
 Loop
Loop

GOTDATA:
 A=Get(1,1)
 Debug A
 Return

 160

Geta
GETA channel, ArrayName, bytelength
 channel : RS232 Channel (0 to 3)
 ArrayName : Array to store Received data (Byte type only)
 Bytelength : Number of Bytes to store (1 to 65535)

The command Geta can be used to store received RS232 data in a Byte
array. Data will be stored starting from the first element of the array.
Again, please check the receive buffer with BLEN() before reading to avoid
garbage data.

Const Device = cb280
Dim A(10) As Byte
Opencom 1,115200,3,50,10
Set Until 1,8
On Recv1 Gosub GOTDATA
Do
 Do While In(0) = 0
 Loop ' Wait until press button (Connect P0)
 Putstr 1,"CUBLOC",Cr
 Do While In(0) = 1
 Loop
Loop

GOTDATA:
 Geta 1,A,8
 Debug A(0),A(1),A(2),A(3),A(4),A(5),A(6),A(7)
 Return

 161

Geta2
GETA channel, ArrayName, bytelength, stopchar
 channel : RS232 Channel (0 to 3)
 ArrayName : Array to store Received data (Byte type only)
 Bytelength : Number of Bytes to store (1 to 65535)
 Stopchar : Stop character ascii code

Same as GETA command, except it will stop reading data at the StopChar
even if the data received is less than Bytelength. If StopChar is not found,
then it will operate just like a GETA command.

StopChar is included in the received data.

You can use SYS(1) command to check the number of bytes read:

Dim A(10) As Byte

Opencom 1,19200,0,50,10

Geta2 1,A,20,10 ‘ Read until Stop Character ascii code 10 is found

 ‘ or 20 bytes have been read

Use with CUBLOC STUDIO 2.0.X and above.

 162

Getcrc
GETCRC Variable, ArrayName, Bytelength
 variable : String Variable to store results (Integer type)
 ArrayName : Array with data(Must be a Byte array)
 Bytelength : number of bytes to calculate CRC

This function calculate a CRC when using MODBUS RTU Master Mode.
GETCRC will return a 16-bit integer CRC value of the set Array. You can set
the number of bytes to use for CRC calculation from the Array starting at 0.

Const Device = CB280
 Opencom 1,115200,3,80,20
 Set Modbus 1,9
 Dim A(20) As Byte
 Dim B As Integer
 Ramclear
 Usepin 0,Out
 Usepin 9,Out

 Set Ladder On

 A(0) = 9
 A(1) = 2
 A(2) = 3
 A(3) = 0
 A(4) = 10
 A(5) = 23

 Getcrc B,A,6 ‘Name of Array.
 Debug Hex B,Cr

* Please use byte arrays when using this function.

 163

Getstr()
Variable = GETSTR(channel, length)
 Variable : String Variable to store results
 channel : RS232 Channel
 length : Length of data to receive

Same as Get(), except the variable to store results can only be String and
the length of data is not limited to 4 bytes.

Const Device = cb280
Dim A As String * 10
Opencom 1,115200,3,50,10
Set Until 1,8
On Recv1 Gosub GOTDATA
Do
 Do While In(0) = 0
 Loop ' Wait until press button (Connect P0)
 Putstr 1,"CUBLOC",Cr
 Do While In(0) = 1
 Loop
Loop

GOTDATA:
 A=Getstr(1,8)
 Debug A
 Return

 164

Getstr2()
Variable = GETSTR(Channel, Bytelength, StopChar)
 Variable : String Variable to store results
 Channel : RS232 Channel
 Bytelength : Length of data to receive
 StopChar : Stop character ascii code

Same as the GETSTR command, except it will stop reading data at the
StopChar even if the data received is less than Bytelength. If StopChar is
not found, then it will operate just like a GETSTR command.

(Use with CUBLOC STUDIO 2.0.X and above.)

 165

Gosub...Return
The GOSUB command can call a sub-routine. A RETURN command must
be used at the end of the sub-routine.

GOSUB ADD_VALUE

ADD_VALUE:
 A=A+1
 RETURN

Goto
The GOTO command will instruct the current program to jump to a specified
label. This is part of every BASIC language, but we do not recommend the
use of GOTO as it can interfere with structural programming. Be especially
careful when using Goto within a Gosub or subroutine, since improperly
terminating a subroutine can have undesired effects.

 If I = 2 Then
 Goto LAB1
 End If
LAB1:
 I = 3

About Labels…
A Label can be set with character ‘:’ to specify a point for GOTO or GOSUB
to begin execution.

ADD_VALUE:

LINKPOINT:

A label cannot use reserved constants, numbers, or include a blank space.
Do not do the following:

Ladder: ‘Reserved constant

123: ‘Number.

About 10: ‘Blank space.

 166

HEAP Memory Access

HEAP memory access is a special feature only available on the CB405
module. The user may use 55KB of HEAP memory from address 0 through
56831 (&H00000 through &HDDFF). The user can store large data for
graphics, temperature tables, etc.,. With a backup battery, the HEAP
memory can be used for datalogging and other persistent uses.

0000

0000

&HDDFF &HFFF

Heap Memory EEPROM Memory

4K bytes

55K bytes

There are five HEAP memory access functions:

Function Syntax Feature
HEAPCLEAR Heapclear Erase the entire Heap

memory.
HREAD Variable = HREAD(Address, Length) Read the designated number

of bytes set by Length from
the Heap memory address
and store into a variable.

HWRITE HWRITE Address, Variable, Length Store the designated number
of bytes set by Length to the
Heap memory Address.

HEAPW HEAPW Address, Variable Store one byte to the Heap
memory Address.

HEAP Variable = HEAP(Address) Read one byte from the Heap
memory Address and store
into a variable.

 167

Hread()
Variable = HREAD (Address, ByteLength)
 Variable : Variable to store results
 Address : HEAP memory address
 ByteLength : number of bytes to read, constant or variable (1 to 4)

Read data from the HEAP memory address. You can read up to 4 bytes at
a time.

Hwrite
HWRITE Address, Data, ByteLength
 Address : HEAP memory address
 Data : Constant or Variable with data (whole numbers only)
 ByteLength : number of bytes to write

Write data to a HEAP memory address.

DIM A AS INTEGER

DIM B AS INTEGER

A = 100

HWRITE 0,A,2 ‘ Write integer A to address 0.

B = HREAD(0,2) ‘ Read from address 0 and store in B.

NOTE
EEREAD and EEWRITE have same syntax as HREAD and HWRITE.

Function Memory

Type
Feature

EEWRITE, EEREAD EEPROM Retains data during power cycles without a
battery. The EEWRITE command takes about
5mS.
4KB of available memory

HREAD, HWRITE SRAM Retains data during power cycles with a backup
battery. Without a backup battery, data is lost.
HWRITE command takes about 20 micro-seconds
to execute. Faster speed in comparison with
EEWRITE. 55KB of available memory

 168

Heapclear
HEAPCLEAR

Set all 55KB of HEAP memory to zero.

Heap()
Variable = HEAP (Address)
 Variable : Variable to store results
 Address : HEAP memory address

Returns 1 byte of data from a HEAP memory address.

Heapw
HEAPW Address, Data
 Address : HEAP memory address
 Data : Constant or Variable with data (Byte only)

Write 1 byte of data to a HEAP memory address.

HEAP Memory Addressing

The HEAP memory is divided into byte unit addresses. When a LONG
variable is stored, 4 bytes are stored, and 4 memory addresses are used.

HWRITE 0, &H1234ABCD, 4

0 CD
1 AB
2 34
3 12

As you can see in the above table, when a LONG variable is stored in HEAP
memory address 0, four memory addresses are taken.

HWRITE 0, &HABCD, 2

HWRITE 1, &H6532, 2

 169

DEMO PROGRAM

 Const Device = CB405
 Dim A As Byte
 Dim I As Long,J As Long

 I = &HABCD1234
 Heapclear
 Hwrite 0,I,4
 Do
 Heapw 56830,100
 Heapw 56831,123

 Debug Dec Heap(56830),Cr
 Debug Dec Heap(56831),Cr
 J = Hread(0,4)
 Debug Hex J,Cr
 Delay 100
 Loop

 170

High
HIGH Port
 Port : I/O Port number

Set the Port to a logic HIGH state, 5V.

OUTPUT 8 ‘Set Port 8 to output state.
HIGH 8 ‘Set Port 8 to HIGH (5V).

When a port is set to High, the port is internally connected to VDD (5V). If
it’s set to Low, the port is internally connected to VSS (0V). This allows
either source or sink interfacing to external components (up to 25ma for
source or sink).

 171

I2Cstart
I2CSTART

Set I2C SDA and SCL to Start mode. After this command, SDA and SCL go
LOW.

SDA

START

SCL

I2Cstop
I2CSTOP

Set I2C SDA and SCL to Stop mode. After this command, SDA and SCL go
HIGH.

SDA

STOP

SCL

 172

I2Cread()
Variable = I2CREAD(dummy)
 Variable : Variable to store results. (No String or Single)
 dummy : dummy value.

Read a byte from the I2C Ports set by SET I2C command. Use any value
for the dummy value.

A = I2CREAD(0)

SCL

SDA

Ack

This command will send an ACK signal back to the slave I2C device: after
reading a byte, an SCL pulse will be sent while SDA is kept LOW.

 173

I2Creadna()
Variable = I2CREADNA(dummy)
 Variable : Variable to store results. (No String or Single)
 dummy : dummy value. (Normally 0)

Same function as I2CREAD command without acknowledgement.

A = I2CREADNA(0)

SCL

SDA

NoAck

 174

I2Cwrite()
Variable = I2CWRITE data

Variable : Acknowledge
(0=Acknowledge, 1=No Acknowledge)

 data : data to send (Byte value : 0 to 255)

Sends one byte of data through I2C. This command creates an ACK pulse
and returns 0 if there is acknowledge and 1 if there isn’t. If there is no
acknowledge, there was a communication error (possibly due to incorrect
wiring). This can be used to trigger an error processing function such as
below:

IF I2CWRITE(DATA)=1 THEN GOTO ERR_PROC

If you don’t need to check for ACK, you can just use any variable to receive
the ACK status as shown below:

A = I2CWRITE(DATA)

One byte of data transfer takes approximately 60 microseconds.

Please refer to Chapter 8 “About I2C…” for detailed I2C communications
description.

 175

If...Then...Elseif…Endif
You can use If…Then…Elseif...Else…EndIf conditional statements to control
execution of your program.

If Condition1 Then [Expression1]
 [Expression2]
[Elseif Condition2 Then
 [Expression3]]
[Else
 [Expression4]]
[End If]

Usage 1
 If A<10 Then B=1

Usage 2
 If A<10 Then B=1 Else C=1

Usage 3
 If A<10 Then ‘* When using more than 1 line,
 B=1 ‘* do not put any Expressions after “Then”.
 End If

Usage 4
 If A<10 Then
 B=1
 Else
 C=1
 End If

Usage 5
 If A<10 Then
 B=1
 Elseif A<20 Then
 C=1
 End If

Usage 6
If A<10 Then

 B=1
 Elseif A<20 Then
 C=1
 Elseif A<40 Then
 C=2
 Else
 D=1
 End If

 176

In()
Variable = IN(Port)
 Variable : The variable to store result (No String or Single)
 Port : I/O Port number (0 to 255)

Read the current state of the specified Port. This function reads the state of
the I/O Port and stores it in the Variable. When you execute this command,
CUBLOC will automatically set the Port to input and read the status. You do
not need to use the Input command to set the Port beforehand when using
this command.

DIM A AS BYTE
A = IN(8) ‘ Read the current state of Port 8
 ‘ and store in variable A(0 or 1)

TIPS
By default, all I/O Ports are set to HIGH-Z at power ON.
When a Port is set to output, it will either output HIGH or LOW signal.
HIGH is 5V and LOW is 0V or GND (ground).

 177

Incr
INCR variable
 Variable : Variable to increment. (No String or Single)

Increment the variable by 1.

INCR A ‘Increment A by 1.

 178

Input
INPUT Port
 Port : I/O Port number (0 to 255)

Set the specified Port to High-Z (High Impedance) input state.
All I/O Ports of CUBLOC module are set to HIGH-Z input by default at power
on.

High Impedance means that the value of resistance is so high that it’s
neither HIGH nor LOW; it won’t affect a circuit attached to the Port.

INPUT 8 ‘Set Port 8 to HIGH-Z input state.

 179

Keyin
Variable = KEYIN(Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0 to 255)
 deboucingtime : Debouncing Time (1 to 65535)

The command KEYIN removes contact bounce before reading an input.
You can use KEYIN only with active low inputs as shown below. For active
high inputs, please use KEYINH. When a button press is detected, Keyin
will return 0; otherwise, it will return 1.

If you use 10 for the deboucing time, the CUBLOC will debounce for 10 ms.
Contact bounce usually stops after 10ms, so our recommendation is 10ms
for most applications

A = KEYIN(1,10) ‘Read from port after removing bouncing effect.

Bouncing effect

 180

Keyinh
Variable = KEYINH(Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0 to 255)
 deboucingtime : Debouncing Time (0 to 65535)

KEYINH is for active high inputs. For active low inputs, the KEYIN
command must be used.

When a button press is detected, Keyinh will return 1; otherwise, it will
return 0.

A = KEYINH(1,100) ‘Read from port 1 after removing bouncing effect.

 181

Keypad
Variable = KEYPAD(PortBlock)
 Variable : Variable to store results (Returns Byte, No String or Single)
 PortBlock : Port Block (0 to 15)

Use this command to read input from a matrix keypad. One Port Block can
be used to read a 4 by 4 keypad input. The keypad rows should be
connected to the lower 4 bits of the Port Block, and the keypad columns
should be connected to upper 4 bits of the Port Block.

Pullup resistors (2.2K to 10K) should be connected to the lower 4 bits of the
Port Block. A resistor should be connected even if a row is not being used.

Please refer to the diagram below:

0

1

2

3

4

5

6

7

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

A = KEYPAD(0) ‘ Read the status of keypad connected to Port Block 0

If no keys are pressed, 255 will be returned. Otherwise, the pressed key’s
scan code will be returned.

 182

Ladderscan
LADDERSCAN

This command LadderScan will force 1 scan of LADDER. When put inside
an infinite loop, it will force high-speed Ladder processing (Turbo mode).

If you use the command as shown below, you will not be able to use BASIC
at the same time.

Const Device = CB280 'Device Declaration
Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR
Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
 LadderScan
Loop

 183

Low
LOW Port
 Port : I/O Port number (0 to 255)

Set the Port to LOW state. This command sets the Port to output state and
outputs LOW or 0V (GND).

OUTPUT 8 ‘Set Port 8 to output state.
LOW 8 ‘Set Port 8 to LOW (0V).

When a port is set to High, the port is internally connected to VDD (5V). If
it’s set to Low, the port is internally connected to VSS (0V). This allows
either source or sink interfacing to external components (up to 25ma for
source or sink).

 184

Memadr()
Variable = MEMADR (TargetVariable)
 Variable : Variable to store results (No String or Single)
 TargetVariable : Variable to find physical memory address

The Memadr command will return the memory location of the specified
variable. This can be useful when used with the Peek and Poke commands;
operations similar to C pointer manipulation can be performed.

Dim A as Single
Dim Adr as Integer
Adr = Memadr(A) ‘Return the physical address of A.

 185

Ncd
Variable = NCD source
 Variable : Variable to store results. (No String or Single)
 Source : source value (0 to 31)

The command NCD is used to return a value with the specified bit set to 1.

I = NCD 0 ‘Result is 00000001 = 1
I = NCD 1 ‘Result is 00000010 = 2
I = NCD 2 ‘Result is 00000100 = 4
I = NCD 3 ‘Result is 00001000 = 8
I = NCD 4 ‘Result is 00010000 = 16
I = NCD 5 ‘Result is 00100000 = 32
I = NCD 6 ‘Result is 01000000 = 64
I = NCD 7 ‘Result is 10000000 = 128

 186

Nop
Nop
This command does nothing. It simply takes up one command cycle time.
The Nop command is useful for tuning small intervals.

Low 8
Nop
High 8 ‘Output very short pulse to port 8. (About 50 micro Sec)
Nop
Low 8

 187

On Int
ON INT0 GOSUB label
ON INT1 GOSUB label
ON INT2 GOSUB label
ON INT3 GOSUB label

This command must be called before accepting external interrupts.
CUBLOC has 4 external interrupt Ports. The interrupt Ports can be set to
sense input on the rising edge, falling edge, or both.

SET ONINTx command must be used with this command in order for the
interrupt to work.

*CB220 has no external interrupt inputs.

Rising Edge Falling Edge

Dim A As Integer
On INT0 Gosub GETINT0
Set INT0 0 'Falling Edge Input
Do
Loop

GETINT0:
A=A+1 'Record number of interrupts
Return

 188

On Ladderint Gosub
ON LADDERINT GOSUB label

If Register F40 turns on in LADDER, and the ON LADDERINT GOSUB
command is used, then the processor will jump to the routine specified by
On Ladderint command.

This can be used when a LADDER program needs to trigger a specific piece
of BASIC code.

Please use the SETOUT and DIFU command to write 1 to the Register F40.
When the BASIC interrupt routine is finished, Register F40 can be cleared by
writing a zero to it.

During the interrupt routine execution, writing a 1 to Register F40 will not
allow another interrupt. If Register F40 is cleared from BASIC, it signals
the end of the interrupt routine and is ready to receive another interrupt.

 Usepin 0,In
 Set Ladder On
 Set Display 0,0,16,77,50
 On Ladderint Gosub msg1_rtn
 Dim i As Integer
 Low 1

 Do
 i=i+1
 Byteout 1,i
 Delay 200
 Loop
msg1_rtn:
 Locate 0,0
 Print "ON Ladderint",Dec i
 Reverse 1
 Return

When P0 turns on, Register F40 turns on and the msg1_rtn interrupt routine
in BASIC will be executed. In the interrupt routine, a string is printed to
the LCD.

 189

Although there is only one Register F40 to create an interrupt in BASIC from
LADDER, we can use data register D to process many different types of
interrupts.

When P0 turns ON, D0 gets 3 and the interrupt routine is executed. If P2
turns ON, D0 gets 2 and the interrupt routine is executed. In the interrupt
routine, the user can then process the type of interrupt based on the value
stored in D0.

msg1_rtn:
 If _D(0)=3 Then
 Locate 0,0
 Print "ON Ladderint",Dec i
 End If
 If _D(0)=2 Then
 Locate 0,0
 Print "TEST PROGRAM",Dec i
 End If
 Return

For a short version of the above LADDER commands, the user can use an
INTON command, which accomplishes both WMOV and SETOUT in one
command.

The following is the equivalent shortened version of the above ladder:

 190

On Pad Gosub
ON PAD GOSUB label

The ON PAD interrupt will jump to the specified label when the buffer
amount is equal to the packet size (assigned by the Set Pad command).
Please make sure to use RETURN command after the label.

 Const Device = Ct1720
 Dim TX1 As Integer, TY1 As Integer
 Contrast 450
 Set Pad 0,4,5
 On Pad Gosub GETTOUCH
 Do
 Loop

GETTOUCH:
 TX1 = Getpad(2)
 TY1 = Getpad(2)
 Circlefill TX1,TY1,10
 Pulsout 18,300
 Return

 191

On Recv
ON RECV0 GOSUB label
ON RECV1 GOSUB label
ON RECV2 GOSUB label
ON RECV3 GOSUB label

When data is received on RS232 Channel 0 to 3, this command will jump to
the specified label. The processor will automatically check for received data
and trigger interrupts when this command is used.

Dim A(5) As Byte
Opencom 1,19200,0, 100, 50
On Recv1 DATARECV_RTN ' Jump to DATARECV_RTN when RS232
Do ' Channel 1 receives any data
Loop ' Infinite Loop

DATARECV_RTN:
 If Blen(1,0) > 4 Then
 A(0) = Get(1,1) ' Read 1 Byte.
 A(1) = Get(1,1) ' Read 1 Byte.
 A(2) = Get(1,1) ' Read 1 Byte.
 A(3) = Get(1,1) ' Read 1 Byte.
 A(4) = Get(1,1) ' Read 1 Byte.
 End If
Return ' End of interrupt routine

IMPORTANT
When a RECV interrupt routine is being executed, another RECV
interrupt routine will not be allowed to be executed. After it
finishes current interrupt routine execution, the processor will come
right back to another ON RECV interrupt routine when there’s still
data being received (data in receive buffer).

 192

On Timer()
ON TIMER(interval) GOSUB label
 Interval : Interrupt Interval 1=10ms, 2=20ms……65535=655350ms

1 to 65535 can be used

On Timer() can be used to repeatedly execute an interrupt routine at a
specified interval. Set the desired interval in increments of 10 milliseconds,
and a label to jump to when interrupt occurs.

On TIMER(100) Gosub TIMERTN
Dim I As Integer

I = 0

Do
Loop

TIMERTN:
Incr I ' I is incremented 1 every second.
Return

IMPORTANT
Please pay attention when creating the interrupt routine. It
must require less time to execute than the interval itself. If
interval is set at 10ms, the interrupt routine must be within 10
ms (about 360 instructions). Otherwise, collisions can occur
within the program.

 193

Opencom
OPENCOM channel, baudrate, protocol, recvsize, sendsize
 channel : RS232 Channel (0 to 3)
 Baudrate : Baudrate (Do not use variable)
 protocol : Protocol (Do not use variable)
 recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
 sendsize : Send Buffer Size (Max. 1024, Do not use variable)

To use RS232 communication, this command must be used first.

The CUBLOC has 2 or 4 channels for RS232C communication, depending on
model. Channel 0 is used for Monitor/Download, but the user can use it for
RS232 communication, if she/he wishes to disable monitoring. Download
through that port will still work regardless.

The following are allowed baudrate settings for CUBLOC RS232:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400

For the protocol parameter, please refer to the table below:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
 Parity Stop Bit Bit # of Bits
 0 0 = NONE 0=1 Stop Bit 0 0 = 5 bit
 0 1 = Reserve* 1=2 Stop Bits 0 1 = 6 bit
 1 0 = Even 1 0 = 7 bit
 1 1 = Odd 1 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits Parity Stop Bit Value to Use
8 NONE 1 3
8 EVEN 1 19 (Hex = 13)
8 ODD 1 27 (Hex = 1B)
7 NONE 1 2
7 EVEN 1 18 (Hex = 12)
7 ODD 1 26 (Hex = 1A)

 OPENCOM 1, 19200, 3, 30, 20 ‘Set to 8-N-1

 194

The user can set the send and receive buffer size. The send and receive
buffers take up space in the data memory. Although you can set each
buffer up to 1024 bytes, it will take up that much data memory. The
number of variables you can use will decrease. We recommend receive
buffer size from 30 to 100 and send buffer size from 30 to 50.

For the CB220 module, pins 1 and 2 can be used for Channel 0.
Ports 10 and 11 can be used for RS232C Channel 1.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

TX

TX

RX

RX

CHANNEL 1

CHANNEL 0

For the CB280 module, there are dedicated RS232 ports. For Channel 1,
there are 2 types of outputs, +/- 12V and TTL (+5/0V).

Please make sure to use only one of them at a time.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

+5V

GND

+12V

+12V

-12V

-12V

*Use Set RS232 command to reset the baud rate and parameters during
execution of your program.

 195

CB405 RS232 HOWTO

The following is a table of the 5V TTL signal pins for the CB405:

Channel I/O Port 5V TTL

P42 RX 1
 P43 TX

P8 RX 2
 P9 TX

P56 RX 3
 P57 TX

The CB405 has a internal MAX232 that can be used to convert any of the 5V
TTL signals to +/- 12V level signals. The following is an example of
connecting Channel 3:

Now you can simply connect any +/- 12V RS232 device to TXE and RXE.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
Sin
Atn
Vss
P0

SCK / P1
MOSI / P2
MISO / P3

P4
PWM0 / P5
PWM1 / P6
PWM2 / P7

RX2 / P8
TX2 / P9

P10
PWM6 / P11
PWM7 / P12
PWM8 / P13

P14
P15

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P16 / AD0
P17 / AD1
P18 / AD2
P19 / AD3
P20 / AD4
P21 / AD5
P22 / AD6
P23 / AD7
P24
P25
P26
P27 / PWM3
P28 / PWM4 INT0
P29 / PWM5/ INT 1
P30 / INT2
P31 / INT3

 /

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TXE
RXE

AVdd
Vdd

AD8 / P32
AD9 / P33

AD10 / P34
AD11 / P35
AD12 / P36
AD13 / P37
AD14 / P38
AD15 / P39

HCNT1 / P47
HCNT0 / P46

P45
P44

TX1 / P43
RX1 / P42
SDA / P41
SCL / P40

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTXE
TtlRXE
AVref
Vss
P48
P49
P50
P51 / PWM9
P52 / PWM10
P53 / PWM11
P54
P55
P63
P62
P61
P60
P59
P58
P57 / TX3
P56 / RX3

CB405
Input
Only

 196

Out
OUT Port, Value
 Port : I/O Port number (0 to 255)
 Value : Value to be output to the I/O Port (1 or 0)

Outputs 1 or 0 to the specified Port. When you execute this command, the
CUBLOC will automatically set the Port to output and set the Port state.
You do not need to use the Output command to set the Port beforehand
when using this command.

OUT 8,1 ‘Output HIGH signal on Port 8.
 ‘(This is same as using command High 8)

OUT 8,0 ‘Output LOW signal on Port 8.
 ‘(This is same as using Low 8)

 197

Output
OUTPUT Port
 Port : I/O Port number (0 to 255)

Set the Port to output state. All I/O Ports of CUBLOC module are set to
HIGH-Z input by default at power on.

OUTPUT 8 ‘Set Port 8 to output state.

You can also use the HIGH or LOW commands to set a Port to the output
state. When using the Output command, HIGH or LOW state is not clearly
defined. We recommend the use of HIGH or LOW command to set output
mode.

LOW 8 ‘Set Port 8 to output mode and output LOW signal.

 198

Outstat()
Variable = OUTSTAT(Port)
 Variable : Variable to store results. (No String or Single)
 Port : I/O Port Number (0 to 255)

Reads the current output value for the specified Port. This command is
different from the IN() command; it reads the status of output, not input.

DIM A AS BYTE
A = OUTSTAT(0) ‘Read from Port 0 and store the current status in A.

Pause
PAUSE value

Exact same function as DELAY

 199

Peek()
Variable = PEEK (Address, Length)
 Variable : Variable to Store Result. (No String or Single)
 Address : RAM Address.
 Length : Bytes to read (1 to 4)

Reads the specified length of data starting from the specified data memory
Address.

Poke
POKE Address, Value, Length
 Address : RAM Address
 Value : Variable to store results (up to Long type value)
 Length : Bytes to read (1 to 4)

Write the specified length of data starting at the specified data memory
Address.

 Const Device = CB280
 Dim F1 As Single, F2 As Single
 F1 = 3.14
 Eewrite 10,Peek(Memadr(F1),4),4
 Poke Memadr(F2),Eeread(10,4),4

 Debug Float F2,CR

 200

Pulsout
PULSOUT Port, Period
 Port : Output Port (0 to 255)
 Period : Pulse Period (1 to 65535)

This is a SUB library that outputs a pulse. To create a High pulse, the
output Port must be set to LOW beforehand. To create a Low pulse, the
output Port must be set to HIGH before hand.

If you set the Pulse Period to 10, you will create a pulse of about 2.6ms.
Likewise, a Pulse Period of 100 will be about 23ms.

LOW 2

PULSOUT 2, 100 ‘23mS HIGH Pulse

HIGH 2

PULSOUT 2, 100 ‘23mS LOW Pulse

Pulsout is a premade system sub program.

sub pulsout(pt as byte, ln as word)
 dim dl1 as integer
 reverse pt
 for dl1=0 to ln
 next
 reverse pt
end sub

 201

Put
PUT channel, data, bytelength
 channel : RS232 Channel (0 to 3)
 Data : Data to send (up to Long type value)
 Bytelength : Length of Data (1 to 4)

This command sends data through the specified RS232 port. For Data,
variables and constants can be used. To send a String, please use Putstr
command instead.

OPENCOM 1,19200,0,50,10

DIM A AS BYTE

A = &HA0

PUT 1,A,1 ‘ Send &HA0 (0xA0)

 ‘ to RS232 Channel 1.

The data is first stored in the send buffer set by Opencom. The CUBLOC
BASIC Interpreter will automatically keep sending the data in the send
buffer until it’s empty.

If the send buffer is full when the PUT command is executed, the PUT
command will not wait for the buffer to empty. In other words, the data
waiting to be sent will be thrown away. The command BFREE can be used
to check the send buffer beforehand for such cases.

IF BFREE(1,1) > 2 THEN ‘ If send buffer has at least 2 bytes free
 PUT 1,A,2
END IF

BFREE() checks for how much space the buffer currently has.

TIPS
After using PUT or PUTSTR, the function SYS(0) can be used to verify that
the data has been stored in the send buffer.

OPENCOM 1,19200,0,50,10
PUTSTR 1,”COMFILE”
DEBUG DEC SYS(0) ‘ If output is 7, all data has been stored
 ‘ in the send buffer

*Please refer to the On Recv interrupt routine for receiving data using the
hardware serial buffer.

IMPORTANT
The command
OPENCOM must be
used beforehand

 202

Puta
PUTA channel, ArrayName, bytelength
 channel : RS232 Channel. (0 to 3)
 ArrayName : Array Name
 Bytelength : Bytes to Send (1 to 65535)

The command Puta is used to send a Byte Array.

The array data will be sent starting from the first element of the array.

Dim A(10) As Byte
Opencom 1,19200,0,50,10
Puta 1,A,10 ‘ Send 10 Bytes of Array A

*Please refer to On Recv interrupt routine for receiving data using the
hardware serial buffer.

IMPORTANT
If you try to send more bytes than the array has, CUBLOC will send
garbage values.

 203

Puta2
PUTA channel, ArrayName, bytelength, stopchar
 channel : RS232 Channel. (0 to 3)
 ArrayName : Array Name
 Bytelength : Bytes to Send (1 to 65535)
 Stopchar : Stop character ascii code

Same as the PUTA command, except it will stop transmission at a set
character in the array (StopChar will be the last character to be sent).

Use with CUBLOC STUDIO 2.0.X and above.

 204

Putstr
PUTSTR channel, data…
 channel : RS232 Channel. (0 to 3)
 Data : String Data (String variable or String constant or Constant)

Sends String data though an RS232 Channel.

OPENCOM 1,19200,0,50,10
PUTSTR 1,”COMFILE TECHNOLOGY”, DEC I, CR

Similar to the Put command, Putstr stores data to be sent in the send buffer.
Afterwards, the CUBLOC BASIC Interpreter takes care of the actual sending.
Please also be careful to not overload the send buffer when it’s full, so you
do not lose any data that needs be sent.

 205

Pwm
PWM Channel, Duty, Period
 Channel : PWM Channel Number (0 to 15)
 Duty : Duty Value, must be less than the Period.
 Period : Maximum of 65535

Outputs a PWM waveform. Be aware that the PWM Channel Number is
different from the I/O port number. For the CB280, Ports 5, 6, and 7 are
used for PWM 0, 1, and 2. Before using PWM, make sure to set the Ports
used to OUTPUT mode, and set them to a known state (HIGH or LOW).

Depending on the value of Period, a PWM signal of up to 16 bit precision is
generated. A Period of 1024 is a 10 bit PWM; a Period of 65535 is a 16 bit
PWM. Actual PWM update frequency in Hz is as follows:

Frequency = 2304000 / Period

The Duty value must to be less than the Period value. The PWM output will
remain active for “Duty” counts within the “Period” time window.

PWM is independently hardware driven within the CUBLOC. Once the PWM
command is executed, it will keep running until the PWMOFF command is
called.

200

1024

LOW 5 ‘ Set port 5 output and output LOW signal.
PWM 0,200,1024 ‘ Output 10-bit PWM with duty of 200 and
 ‘ Width of 1024

IMPORTANT
PWM Channels 0, 1, and 2 must use the same value of Period since
they share the same resources. Their duty values can be different.

PWM Channels 3, 4, and 5 also must use the same value of Period
since they share the same resources. Their duty values can be
different.

 206

Pwmoff
PWMOFF Channel
 Channel : PWM Channel. (0 to 15)

Stops the PWM output.

The following are PWM channels available on each module:

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8PWM2

PWM1
PWM0

For CB220, 3 PWM channels are provided on the Ports P5, P6, and P7.

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

PWM2

PWM5
PWM1

PWM4
PWM0

PWM3

Please refer to the table below for PWM Channels and corresponding I/O
ports..

 CB220 CB280 CB290 CT17X0 CB405
PWM0 I/O 5 I/O 5 I/O 5 I/O 8 I/O 5
PWM1 I/O 6 I/O 6 I/O 6 I/O 9 I/O 6
PWM2 I/O 7 I/O 7 I/O 7 I/O 10 I/O 7
PWM3 I/O 19 I/O 89 I/O 11 I/O 27
PWM4 I/O 20 I/O 90 I/O 12 I/O 28
PWM5 I/O 21 I/O 91 I/O 13 I/O 29
PWM6 I/O 11
PWM7 I/O 12
PWM8 I/O 13
PWM9 I/O 51
PWM10 I/O 52
PWM11 I/O 53

 207

Ramclear
RAMCLEAR

Clear CUBLOC BASIC’s RAM. BASIC’s data memory can hold garbage
values at power on. Ramclear can be used to initialize all variables to zero.

*There are CUBLOC modules that support battery backup of the RAM. If
you don’t use Ramclear command in these modules, CUBLOC will remember
previous values of RAM across power cycles.

 208

Reset
RESET

Restarts the Cubloc BASIC program from the beginning. It does not clear
the data memory, so any variables that have been declared will contain
their previous values. Ramclear should be used if this behavior is not
desirable.

 209

Reverse
REVERSE Port
 Port : I/O Port Number. (0 to 255)

Reverse the specified Port output, High to Low or Low to High.

OUTPUT 8 ‘Set Port 8 to output.
LOW 8 ‘Set output to LOW.
REVERSE 8 ‘Reverse LOW to HIGH.

 210

Rnd()
Variable = RND(0)

The command Rnd() creates random numbers. A random number between
0 and 65535 is created and stored in the specified variable. The number
inside Rnd() has no meaning.

DIM A AS INTEGER
A = RND(0)

Internally, this function is pseudorandom; it creates a random number
based on the previous values. When powered off and turned back on again,
the same pattern of random values is generated. Thus, this function is not
a true random number generator.

 211

Select...Case
Select..Case

If the condition Value of Case is met, the Statement under the case is
executed.

Select Case Variable

 [Case Value [,Value],…

 [Statement 1]]

 [Case Value [,Value],…

 [Statement 2]]

 [Case Else

 [Statement 3]]

End Select

Select Case A
 Case 1
 B = 0
 Case 2
 B = 2
 Case 3,4,5,6 ‘ Use Comma(,) for more than 1 value.
 B = 3
 Case Is < 1 ‘ Use < for logical operations.
 B = 3
 Case Else ‘ Use ELSE for all other cases.
 B = 4
End Select

Select Case K
 Case Is < 10 ‘ If less than 10
 R = 0
 Case Is < 40 ‘ If less than 40
 R = 1
 Case Is < 80
 R = 2
 Case Is < 100
 R = 3
 Case Else
 R = 4
End select

 212

Set Debug
SET DEBUG On[/Off]

Set Debug is set to On by default.

You can use this command to control debugging functions in BASIC.

When you don’t need the DEBUG feature, you can use this command to
turn off all DEBUG commands instead of modifying every instance of Debug.
When this command is used, all DEBUG commands are not compiled; they
are simply discarded from the program.

Debug Command How-to

When used correctly, the Debug command can help the user identify and fix
bugs in the program. The user can check the value of variables during
execution of a program, simulate an LCD, and do other tasks to help save
development time.

1. How to Check if program is being reset

Sometimes you will want to check if your program is being reset. This is
usually due to faulty programming.

Simply put a Debug statement at the beginning of your program, such as
‘Debug “=========Reset=========” ‘ as shown below:

Const Device = CB280

Debug "==========Reset========="

Do

 High 0

 Delay 200

 Low 0

 Delay 200

Loop

 213

2. How to check if a particular point of the program is
being executed

Simply insert a Debug command where you would like to know if that part
of the program is executed, as shown below:

Const Device = CB280

Do

 High 0

 Delay 200

 Low 0

 Delay 200

Loop

Debug "This Part!"

(The debug statement above will never execute, as the program stays in
the Do…Loop and will never get out of it)

 214

3. How to simulate an LCD

You can simulate an LCD using the Debug terminal. Simply use the
Goxy,XX,YY to access a particular location on the terminal as shown below:

Use the command
Debug CLR to clear
the Debug window.
At any time during
development, you
can disable and also
not include Debug
statement during
Compiling by using
the command, “Set
Debug Off”.

 215

Set I2c
SET I2C DataPort, ClockPort
 DataPort : SDA, Data Send/Receive Port. (0 to 255)
 ClockPort : SCL, Clock Send/Receive Port. (0 to 255)

This command sets the I2C DataPort and ClockPort, SDA and SCL for I2C
communication. Once this command is executed, both Ports become
OUTPUT, HIGH state. Please use Input/Output Port for I2C and use two
4.7K resistors as shown below.

SCL
SDA

Some of the I/O ports only support Input or Output. Please check the Ports
in the data sheet for the model you are using.

 216

Set Int
SET INTx mode
 x : 0 to 3, External Interrupt Channel
 mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

This command must be used with On Int command in order to receive
external interrupt inputs.
The mode of interrupt input can be set here to either falling edge, rising
edge, or changing edge.

SET INT0 0 ‘ Set external interrupt to be on the Falling Edge.

SOUT

SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

INT0
INT1
INT2
INT3

 217

Set Ladder on/off
SET LADDER On[/Off]

Ladder is set to Off by default.
Use this command to turn On Ladder Logic.

The following is an example of minimal BASIC code for starting Ladder
logic:

Const Device = CB280 'Device Declaration

Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR

Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder

Do
Loop 'BASIC program will run in infinite loop/

 218

Set Modbus
Set Modbus mode, slaveaddress, returninterval
 mode : 0=ASCII, 1=RTU
 slaveaddress : Slave Address (1 to 254)
 returninterval : return interval (1 to 255)

CUBLOC supports the MODBUS protocol in combination with Ladder
functions. MODBUS can connect to RS232 Channel 1 only.

To enable MODBUS slave mode, please use the Set Modbus command. This
command will enable the MODBUS slave. It must come after OPENCOM
command and only runs on RS232 Channel 1. Baudrate, stop bit, and parity
can be set with OPENCOM.

 Opencom 1,115200,3,80,80 ‘ Please set receive buffer
 ‘ of at least 50.
 Set Modbus 0,1,100 ' ASCII Mode, Slave Address=1

After this command, CUBLOC responds automatically. CUBLOC supports
MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Command Name
01, 02 Bit Read
03, 04 Word Write
05 1 Bit Write
06 1 Word Write
15 Multiple Bit Write
16 Multiple Word Write

Please refer to Chapter 9 for detailed MODBUS description and MOBUS
ASCII and RTU examples.

The term returninterval is the delay time for CUBLOC or CUTOUCH to
respond to the Master MODBUS device. If the returninterval is set too fast,
the Master device might not be able to receive all data. The default setting
is 1, which is about 200 micro-seconds. The user may also set this value to
100, which is about 4.5ms or to 255, which is about 11ms.

 219

Set Onglobal
SET ONGLOBAL On[/Off]

At power On, Set Onglobal is ON by default.

This command turns on or off the ability to process ALL interrupts.

When Onglobal is turned Off and turned On, all interrupt settings set before
turning Off will be in effect.

SET ONGLOBAL OFF ‘ Turn ALL interrupts OFF.

If you don’t use any interrupts, you can turn off all interrupts to increase the
execution speed of CUBLOC.

 220

Set Onint
SET ONINTx On[/Off]

At power On, Set Onint is ON by default.

This command turns On or Off the ability to receive individual external
interrupts using global flags. The names of these flags correspond to the
interrupt number supported by the device. For example ONINT1 is used for
Interrupt 1.

When the ONINTx flag is set to ON for a specific interrupt, then an interrupt
can be received using the ON INTx command. If the flag is set to OFF,
then the code for ON INTx will not be executed if the corresponding external
interrupt occurs. See also the SET INTx command which controls external
interrupts.

Set ONINT0 On
Set ONINT1 On
Set ONINT1 Off
Set ONINT2 Off
Set ONINT3 On

 221

Set OnLadderint
SET ONLADDERINT On[/Off]

At power On, Set OnLadderint is ON by default.

This command turns On or Off the ability to receive Ladder interrupts using
global flags.

When the OnLadderint is set to On, then an interrupt can be received using
the On Ladderint command. If the global is set to OFF, then the code for
On Ladderint will not be executed if the Ladder interrupt occurs. See also
the On Ladderint command.

 222

Set Onpad
SET ONPAD On[/Off]

At power On, Set Onpad is On by default.

This command turns On or Off the ability to receive Onpad interrupts using
global flags.

When the Onpad is set to on, then an interrupt can be received using the
On Pad command. If the Onpad is set to OFF, then the code for On Pad will
not be executed if the interrupt occurs. See also the Set Pad and On Pad
commands.

 223

Set Onrecv
SET ONRECV0 On[/Off]
SET ONRECV1 On[/Off]
SET ONRECV2 On[/Off]
SET ONRECV2 On[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On Recv interrupts
using global flags. An On Recv interrupt occurs after data is received on
the serial port AND stored into the receive buffer.

When an Onrecv is set to On, then an interrupt can be received using the
On Recv command. If an Onrecv is set to OFF, then the code for On Recv
will not be executed if the interrupt occurs. See also the On Recv command.

Set ONRECV1 On
Set ONRECV1 Off

 224

Set Ontimer
SET ONTIMER On[/Off]

At power On, Set Onrecv is On by default.

This command turns On or Off the ability to receive On Timer interrupts
using global flags. An interrupt occurs at every time interval set by the On
Timer() command.

When the Ontimer is set to on, then an interrupt can be received using the
On Timer() command. If the Ontimer is set to OFF, then the code for On
Timer() will not be executed if the interrupt occurs. See also the On Timer()
command.

 225

Set Outonly
SET OUTONLY On[/Off]

The CB290/CT1720 (Rev B) output ports are in high impendence (High-Z)
state in order to prevent garbage values being output at power ON.

You must use the “Set OUTONLY ON” command to enable CB290 / CT1720
output-only ports.

Const Device = CB290
Set Outonly On
Low 24

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Sout
S in
Atn
Vss

SS_P0
Input only) SCK_P1

MOSI_P2
MISO_P3

P4
PWM0_P5
PWM1_P6
PWM2_P7

P56
P57
P58
P59
P60
P61
P62
P63

(

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Vdd
Vss
RES
VBB
P8 ADC0
P9 ADC1
P10 ADC2
P11_ADC3
P12_ADC4
P13_ADC5
P14_ADC6
P15_ADC7
P64
P65
P66
P67
P68
P69
P70
P71

_
_
_

95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

P
W

M
4

_P
90

P
W

M
5

_
P

91
P

20
P

21
H

C
N

T0
_

P
22

H
C

N
T1

_
P

23
P

76
P

77
P

78
P

79
P

84
P

85
P

86
P

87

81 82 83 84 85 86 87 88 89 90 91 92 93 94

N
/C

P
89

P

W
M

3
P

16

 S
C

L
C

U
N

E
T

)
P

17
 S

D
A

(C
U

N
E

T
)

P
18

 IN

T3
P

19
 I

N
T4

P
72

P
73

P
74

P
75

P
80

P
81

P
82

P
83

_ _
(

_ _ _

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TX1
RX1

AVdd
Vdd
P24
P25
P26
P27
P28
P29
P30
P31
P40
P41
P42
P43
P44
P45
P46
P47

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

TtlTX1
TtlRX1
AVref
Vss
P32
P33
P34
P35
P36
P37
P38
P39
P48
P49
P50
P51
P52
P53
P54
P55

CB290

Output Only

Model Output only port
CB290 P24 to P55
CT1720 / CT1721 P24 to P55

 226

Set Pad
SET PAD mode, packet, buffersize
 mode : Bit Mode (0 to 255)
 packet : Packet Size (1 to 255)
 buffersize : Receive Buffer Size (1 to 255)

The CUBLOC has a dedicated port for Keypad / Touchpad inputs similar to a
PC’s Keyboard and Mouse ports. This port can be used with the Set Pad
command to create interrupts when input is received on the Keypad,
Touchpad, etc.,. This port is basically a Slave mode SPI communication.

To use PAD communications, you must use a Set Pad command at the
beginning of your program. The PAD communication uses 4 wires. SCK is
used as clock signal, SS as Slave Select, MOSI as Master Out Slave In, and
MISO as Master In Slave Out.

SS
SCK

MOSI
MISO

SS
SCK
MOSI
MISO

TOUCH PAD
CONTROLLER

TO
U

C
H

PA
D

CUBLOC

I/O ports P0 through P3 can be used for PAD communications.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

SS
SCK

MOSI
MISO

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

 227

SS
SCK

MOSI
MISO

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

The Packet setting is the size of a packet that will cause an interrupt. For
example, the Cutouch panel requires 4 bytes to be received before an
interrupt is called.

Buffersize is the total size of the receive buffer. The buffer size must be at
least 1 more than the packet size. A larger buffer will essentially give you
more time to process the interrupt routine. The buffer size is usually set to
5 or 10 times the packet size.

Mode will set the receiving mode of the received data. Please refer to the
below table:

Mode Value Bit

Pattern
Diagram

LSB First &H20 0010
xxxx

MSB First &H00 0000
xxxx

SCK Low-
Edge
Triggered

&H08 xxxx
1xxx

SCK High-Edge
Triggered

&H00 xxxx
0xxx

Sampling
after SCK

&H04 xxxx
x1xx

Sampling
before SCK

&H00 xxxx
x0xx

"0" "1"

 228

You can add the values of the receiving modes. For example, for MSB first,
High-Edge Triggered SCK and sampling after SCK:

 0x00 + 0x00 + 0x04 = 0x04

Here are some of the common examples:

Sample

Sample

Sample

Sample

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

MSB Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 LSB

SCK

SCK

SCK

SCK

&H00

&H04

&H08

&H0C

For PAD communications, you can use Comfile’s Keypads or Touch screens.

The Set Pad command will automatically set the ports P0 through P3, the
user doesn’t have to set them.

 229

Set Rs232
Set Rs232 channel, baudrate, protocol
 channel : RS232 Channel (0 to 3)
 Baudrate : Baudrate (Do not use variable)
 protocol : Protocol (Do not use variable)

You can only use Opencom command once to open a serial port. In order
to change the baudrate and protocol, the Set Rs232 command can be used.

For the protocol parameter, please refer to the table below:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
 Parity Stop Bit Bit # of Bits
 0 0 = NONE 0=

1 Stop Bit
0 0 = 5 bit

 0 1 = Reserve* 1=
2 Stop Bits

0 1 = 6 bit

 1 0 = Even 1 0 = 7 bit
 1 1 = Odd 1 1 = 8 bit

The below table shows typical settings based on the previous table:

Bits Parity Stop Bit Value to Use
8 NONE 1 3
8 EVEN 1 19 (Hex = 13)
8 ODD 1 27 (Hex = 1B)
7 NONE 1 2
7 EVEN 1 18 (Hex = 12)
7 ODD 1 26 (Hex = 1A)

 Opencom 1, 19200, 3, 30, 20 ‘Open Rs232 channel 1
 Set Rs232 1, 115200, 19 ‘Change Baudrate & Parity

 230

Set Rs485
Set Rs485 Channel, PortNumber
 Channel : RS232 Channel (0 to 3)
 PortNumber : Transmit Enable Port Number

RS485 allows you to link multiple CUBLOCs up to a distance of 1.2km.
With RS485, there must be 1 master and the rest must be slave devices.
You can use a chip such as the SN75176B or use an RS232 to RS485
converter module.

With RS485, transmitting and receiving data must occur one at a time. The
RS485 is known for being stable under noisy conditions.

You can refer to the following circuit schematic for connecting TTL signals
from a CB280 to an RS485 chip, SN75176B:

CUBLOC CB280 SN75176B

485-

485+

560

560

120

R
RE
DE
D

B
A

TTLTX

TTLRX
P48

The RS485 communication needs a “Transmit Enable” signal to control
when the device is sending or receiving. There can only be one device
transmitting while all the other devices are in receiving mode.

Example:

When the PC is transmitting, all the slave devices can only receive data.

PC

Slave Adr "01" Slave Adr "02" Slave Adr "03"

 231

The SET RS485 command allows a CUBLOC or CUTOUCH to control the data
line whenever it want to send or receive. While the data is being sent, the
Transmit Enable pin will output Active High. This will automatically be done
by the CUBLOC RTOS.

*NOTE: If you are using a RS232-to-RS485 converter and it supports
automatic mode, then you don’t need to use this command.

SET RS485 1,48 ‘ Set P48 as Trasmit Enable pin

TTLTX

P48

When using the SET RS485 command, the Port chosen may not be used for
other purposed.

SN75176B

SN75176B

SN75176B

560

560

120

120

R
RE
DE
D

R
RE
DE
D

R
RE
DE
D

B
A

B
A

B

A

1: Please refer to the diagram on
the left when connecting multiple
CUBLOCs or CUTOUCH using
RS485.

Please use a 120 Ohm
terminating resistor for the device
at the end.

The two 560 Ohm Pull-Up and
Pull-Down resistors are required
for proper communication.

 232

Set Until
SET UNTIL channel, packetlength, stopchar
 channel : RS232 Channel. (0 to 3)
 packetlength : Length of packet (0 to 255)
 stopchar : Character to catch

This is a conditional statement you can put right after the ON RECV
command. Since the ON RECV command will cause an interrupt even when
1 byte of data is received, this command can be used to set when the
interrupt will be called.

When the specified character is received or the length of bytes received has
exceed the set packetlength value, then ON RECV will jump to the specified
interrupt routine. In this way, you can control when you want to process
received data.

The packet length is set in case the specified character never arrives.

You MUST use this command with ON RECV command.
The following is an example:

Dim A(5) As Byte
Opencom 1,19200,0, 100, 50
On Recv1 DATARECV_RTN
Set Until 1,99,"S"

As you can see above, the packet size is 99 bytes. In other words, if
character “S” is not received within 99 bytes, an interrupt will occur.

SET UNTIL 1,5

The user may also just set the packet size and not set the stop character as
shown above.

The character may also be written in decimal as shown below:

SET UNTIL 1,100,4

 233

Shiftin()
Variable = SHIFTIN(clock, data, mode, bitlength)
 Variable : Variable to store results. (No String or Single)
 Clock : Clock Port. (0 to 255)
 Data : Data Port. (0 to 255)
 Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge
 1 = MSB First (Most Significant Bit First), After Rising Edge
 2 = LSB First (Least Significant Bit First), After Falling Edge
 3 = MSB First (Most Significant Bit First), After Falling Edge
 4 = LSB First (Least Significant Bit First), Before Rising Edge
 5 = MSB First (Most Significant Bit First), Before Rising Edge
 bitlength : Length of bits (1 to 16)

This command Shiftin() receives shift input. It uses 2 Ports, CLOCK and
DATA, to communicate.

SHIFTIN and SHIFTOUT commands can be used to communicate with SPI,
Microwire, and similar communication protocols. When using EEPROM, ADC,
or DAC devices that require SPI communication, this command can be used.

CLK

Before Rising Edge

After Rising
Edge

After Falling Edge

DIM A AS Byte
A = SHIFTIN(3,4,0,8) ‘ Port 3 is Clock, Port 4 is Data,
 ‘ Mode 0, 8 bit received.

CLK

0 1 1 0 0 1 0 0 = 26H

DATA

LSB MSB

 234

Shiftout
SHIFTOUT clock, data, mode, variable, bitlength
 Clock : Clock Port. (0 to 255)
 Data : Data Port. (0 to 255)
 Mode : 0 = LSB First (Least Significant Bit First)
 1 = MSB First (Most Significant Bit First)
 2 = MSB First(Most Significant Bit First) , Create ACK (For I2C)
 variable : Variable to store data (up to 65535)
 bitlength : Bit Length (1 to 16)

This command sends shift output. There are 3 modes. Mode 2 is for the
I2C protocol. In I2C communication, an ACK signal is required for every 8
bits.

SHIFTOUT 3,4,0,&H55,8 ‘ Port 3 = Clock,
 ‘ Port 4 = Data, Mode = 0, send 0x55
 ‘ bitlength 8 bit,

CLK

1 0 1 0 1 0 1 0 = 55H
DATA

LSB MSB

 235

Spi
Indata = SPI(Outdata, Bits)
 Indata : input data
 Outdata : output data,
 bits : Number of bits (1 to 32)

This command sends data output with input same time. SHIFTOUT and
SHIFTIN command is supports only one direction at the same time. But SPI
command send and recive simultaneously. This command supports any I/O
ports.

Must use SET SPI command before SPI command. It’s define I/O port for
SPI commands.

Set Spi
SET SPI clk, mosi, miso, mode
 clk : port for clock output.
 mosi : port for data (Master output Slave input).
 miso : port for data (Master input Slave output).
 mode : communication mode
 bit 3: 0= MSB start, 1=LSB star.t
 bit 2: 0=wait at the clock LOW, 1=wait at the clock HIGH.

bit 1: OUTPUT sampling point; 0=before rising edge, 1=after falling edge.
bit 0: INPUT sampling point; 0=before rising edge, 1=after falling edge.

Ex) Set Spi 9,8,7,0

Const Device = CB280

Dim Dtin as Byte

Set Spi 9,8,7,0

Dtin = Spi(Dtout,32)

CLK

MOSI

MISO

GND

CLK

MISO

MOSI

GND

MASTER SLAVE

 236

Steppulse
STEPPULSE Channel, Port, Freq, Qty
 Channel : StepPulse Channel(0 or 1)
 Port : Output Port
 Freq : Output Frequency (Up to 15kHz)
 Qty : # of pulses to output (up to 2147483647)

Output a set of number of pulses at a set frequency (up to 15kHz).
FREQOUT and PWM can also output pulses, but the user cannot control the
number of pulses and must use the PWM ports only. With STEPPULSE, the
user can use any of the output ports and control the total number of pulses
at a desired frequency.

Depending on the CUBLOC module used, the number of available channels
may change. Please refer to the following table for detailed info:

Module Channels Channel PWM Channels that cannot

be used during use of the
command

CB220, 280, 290,
CT17XX

1 0 Channel 0: PWM 3, 4, 5

CB405 2 0 or 1 Channel 0: PWM 3, 4, 5
Channel 1: 6, 7, 8

STEPPULSE uses the CUBLOC processor’s PWM counters. When using this
command, PWM3, PWM4, and PWM5 cannot be used.

For the CB405, when using Channel 1, PWM6, PWM7, and PWM8 cannot be
used. With CB2XX series, only Channel 0 may be used. With CB405, 2
Channels may be used simultaneously for STEPPULSE.

You can use any of the available I/O ports on the CUBLOC. When the
STEPPULSE command is executed, that Port is automatically set to the
ouput state. Even after the command has finished generating pulses, the
Port remains in output state.

Output Frequency can be set from 1hz to 15kHz.

This command will run in the background independently, so the user may
use system resources for other tasks.

 237

Stepstop
STEPSTOP Channel
 Channel : StepPulse Channel (0 or 1)

STEPSTOP command will stop Pulse Output Channel immediately.

Stepstat()
Variable = STEPSTAT (Channel)
 Variable : Variable to store results
 Channel : StepPulse Channel(0 or 1)

STEPSTAT allows you to monitor how many pulses have been generated
since the last STEPPULSE command.

STEPSTAT will return double the number of pulses remaining to be
generated. If there are 500 pulses left to output, STEPSTAT will return 1000.

You can also check the output status of pulses using _F(56) or F56 in
Ladder Logic. When Channel 0 is generating pulses, _F(56) will be logic
HIGH, 1. When Channel 1 is generating pulses, _F(57) will be set to logic
HIGH, 1. If no pulses are being output at the moment, the F registers will
be set to logic LOW, 0.

STEPPULSE CH0

STEPPULSE CH1

F56

F57

 238

Stepaccel
STEPACCEL Channel, Port, FreqBASE, FreqTOP, FreqACCEL, Qty
 Channel : StepPulse Channel (Stepaccel supports only 0)
 Port : Output Port
 FreqBASE : The starting stepper frequency (Up to FreqTOP)
 FreqTOP : The frequency after acceleration is finished (Up to 3.3KHz)
 FreqACCEL : The acceleration in steps per second
 Qty : # of pulses to output (up to 2147483647)

Frequncy Base

Frequncy Top

Frequncy Accel

Number of Pulses

Output a set of number of pulses at a set frequency (up to 3.3kHz) with
acceleration. Stepaccel command supports only 1 channel, so must use
number 0 at the Channel argument.

You can use any of the available I/O ports on the CUBLOC. When the
STEPACCEL command is executed, that Port is automatically set to the
ouput state. Even after the command has finished generating pulses, the
Port remains in output state.

Output Frequency can be set from 1hz to 3.3KHz.

This command will run in the background independently, so the user may
use system resources for other tasks.

 239

DEMO PROGRAM

When the Port 0 switch is pressed, Port 5 will output 300 pulses at the
speed of 5kHz. The following is a circuit diagram for the above code:

P0

P5

5VCB280

5KHz, 130 Pulses 15KHz, 300 Pulses

 240

You can connect a stepper motor and stepper motor driver such as below to
control a stepper motor.

Connect 3 I/Os of CUBLOC to the stepper motor driver. The DISABLE and
DIRECTION pins are only to enable and set the direction of the stepper
motor.

Please refer to your stepper motor specifications on how many pulses are
required to move the stepper motor one rotation.

 241

Sys()
Variable = SYS(address)
 Variable : Variable to store results. (No String or Single)
 address : Address. (0 to 255)

Use command Sys() to read the status of RS232 buffers for both Channel 0
and 1.

z Address 0 : Actual bytes of sent data in send buffer after executing commands

PUT or PUTSTR.

z Address 1 : Actual bytes of sent data in receive buffer after executing

commands GET or GETSTR

z Address 5 : Timer value that increments every 10ms

z Address 6 : Data Memory (RAM) Address

SYS(5) will return the value of the system timer which increments every
10ms.

You may only read the value, not change it. The Timer will increment up to
65535 and then reset to 0. You can use this system timer for applications
requiring an extra timer.

SYS(6) will return the current Data Memory Address. At power ON, the
Data Memory Address is reset to 0. After calling Sub routines or Functions,
the Data Memory Address will increment.

If will also increment when Sub routines or Functions are called within a Sub
routine or a function. Interrupts will also increment the Data Memory
Address. When the Data Memory Address exceeds the total Data Memory
available, it will cause overflow. By using this function, you can avoid
overflow. CB280 has a maximum of 1948 bytes of Data Memory. Please
try to have at least 100 bytes of free Data Memory for a safety buffer.

A = Sys(6) 'Store the current Data Memory Address in A

 242

Tadin()
Variable = TADIN(Channel)
 Variable : Variable to store results. (No String or Single)
 Channel : AD Channel Number (Not Port number, 0 to 15)

This command is similar to Adin(). It returns the average of 10 ADIN
converted values. When working under noisy environments, using Tadin()
could help in obtaining more precise results.

Tadin() is a premade function:

function tadin(num as byte) as integer
 dim ii as integer, ta as long
 ta = 0
 For ii = 0 To 9
 ta = ta + Adin(num)
 Next
 TADIN = TA / 10
End Function

 243

Time()
Variable = TIME (address)
 Variable : Variable to store results. (No String or Single)
 address : Address of time value (0 to 6)

The CUBLOC module CB290 has an internal RTC chip. You can use the
Time() and Timeset commands to set and return time values to and from
the RTC. Time information such as current time, day of the week and year
can be set to the RTC and read from it in real-time.

Time is kept current even when module powers off, if a backup battery is
used.

The following is a chart showing the addresses of the RTC and its
corresponding values.

* You cannot use these commands for CB220 and CB280 since they do not
have an RTC.

Addres
s

Value Range Bit Structure

0 Secon
d

0 to 59 2nd digit place 1st digit place

1 Minute 0 to 59 2nd digit place 1st digit place
2 Hour 0 to 23 2nd digit place 1st digit place
3 Date 01 to 31 2nd digit place 1st digit place
4 Day 0 to 6 1st digit place
5 Month 1 to 12 2nd digit 1st digit place
6 Year 00 to 99 2nd digit place 1st digit place

Please refer to the chart below for day of the week and its corresponding
numerical value:

Sunday 0
Monday 1
Tuesday 2
Wednesday 3
Thursday 4
Friday 5
Saturday 6

 244

System clock RTC
This command will allow you to use the system timer of a CUBLOC as an
RTC. You can use TIME() and TIMESET functions to access the following
addresses:

Address Returning Value Range
10 Seconds 0 to 59
11 Minutes 0 to 59
12 Hours 0 to 65535
13 Continuous

Seconds
0 to 65535

The Address 10 will increment its value by 1 every one second. When its
value becomes 60, Address 11 will increment its value by 1. When Address
11’s value becomes 60, Address 12 will increment its value by 1. When
Address 12’s value becomes 65535, it will reset back to 0. At power ON, all
Addresses are set to 0. The TIMESET command can be used to set the
time at the beginning of user’s program.

The system clock RTC (Address 10 to 13) values are stored as raw binary
values, unlike the on-chip RTC on CB290 and CB405. There is no need for
the user to convert the values using BCD2BIN and BIN2BCD.

The System Clock RTC uses the processor’s system timer and there can be
a slight time difference (< 1%) during a 24 hour period.

Const Device = CB405

Dim i As Integer

Cls

Timeset 10,58

Timeset 13,254

Do

i = Time(10)

Debug Goxy,0,0,dec4 i,Cr

Debug Goxy,0,1,dec4 Time(13)

Delay 100

Loop

Address 13 will increment its value by 1 every second, similar to Address 10,
except it will increment until 65535 before resetting to 0. Address 10
through 13 must be used with CUBLOC STUDIO 2.0.X and above versions.

 245

Timeset
TIMESET address, value
 address : Address of time value (0 to 6)
 value : time value. (0 to 255)

Use the TIMESET command to store new time values.

Address Value Range Bit Structure
0 Second 0 to 59 2nd digit place 1st digit place
1 Minute 0 to 59 2nd digit place 1st digit place
2 Hour 0 to 23 2nd digit

place
1st digit place

3 Date 01 to 31 2nd digit
place

1st digit place

4 Day 0 to 6 1st digit place
5 Month 1 to 12 10 1st digit place
6 Year 00 to 99 2nd digit place 1st digit place

The following is an example showing how to set the time, and output the
current time to the debug window:

Const Device =CB290
 Dim I As Byte
 Timeset 0,0 'Sec
 Timeset 1,&H32 'Min
 Timeset 2,&H11 'Hour
 Timeset 3,&H1 'Date
 Timeset 4,&H5 'Day of the week
 Timeset 5,&H6 'Month
 Timeset 6,&H5 'Year

 Do
 I = Time(6)
 Debug "Year ","200",Hex I, " "
 I = Time(5)
 Select Case I
 Case 0
 Debug "January"
 Case 1
 Debug "February"
 Case 2
 Debug "March"
 Case 3
 Debug "April"
 Case 4
 Debug "May"
 Case 5
 Debug "June"

 246

 Case 6
 Debug "July"
 Case 7
 Debug "August"
 Case 8
 Debug "September"
 Case 9
 Debug "November"
 Case 10
 Debug "December"
 End Select
 I = Time(3) 'Print date
 Debug " ", Hex2 I
 Debug " "

 I = Time(4)
 Select Case I
 Case 0
 Debug "Sunday "
 Case 1
 Debug "Monday "
 Case 2
 Debug "Tuesday "
 Case 3
 Debug "Wednesday "
 Case 4
 Debug "Thursday "
 Case 5
 Debug "Friday "
 Case 6
 Debug "Saturday "
 End Select
 Debug cr

 I = Time(2)
 Debug Hex2 I,":"
 I = Time(1)
 Debug Hex2 I,":"
 I = Time(0)
 Debug Hex I,cr
 Delay 1000
Loop

Debug Terminal Screenshot:

 247

Udelay
UDELAY time

time : interval (1 to 65535)

A more precise delay function. The delay will start out at about 70 micro-
seconds. Every unit added will add 14 to 18 micro-seconds.

For example, Udelay 0 would be about 70 micro-seconds. Udelay 1 would
be about 82 to 84 micro-seconds. When Interrupt or LADDER code is being
executed at the same time, this delay function might be affected. During
this delay, BASIC interrupts are enabled and could cause further delay when
using this command.

To prevent interference by LADDER or BASIC interrupts, consider stopping
LADDER and all interrupts before using this command.

Udelay 100 ‘ Delay about 1630 micro-seconds.

 248

Usepin
Usepin I/O, In/Out, AliasName
 I/O : I/O Port Number. (0 to 255)
 In/Out : “In” or “Out”
 AliasName : Alias for the port (Optional)

This command is used to set the I/O Port status and alias name for LADDER
programs. It is required to do so before using the ports in LADDER.

Usepin 0,IN,START
Usepin 1,OUT,RELAY
Usepin 2,IN,BKEY
Usepin 3,OUT,MOTOR

 249

Utmax
UTMAX variable
 Variable : Variable for decrement. (No String or Single)

Increment the variable by 1. When the maximum is reached, the variable
is no longer incremented. The maximum here refers to the variable type’s
maximum value. For Byte the maximum would be 255, and for Integer the
maximum would be 65535.

Utmax A ‘ Increment A by 1

 250

Wait
Wait time
 Time : interval variable or constant (mS unit) 10 to 2147483640

Wait for the specified time in milliseconds.

This command will generate a delay using the system clock. This delay
function is accurate to 10ms units. It is much more precise than the Delay
command.

Wait 10 ‘ Delay 10 ms.
Wait 15 ‘ Delay 10 ms.
Wait 110 ‘ Delay 110 ms.
Wait 115 ‘ Delay 110 ms.

 251

WaitTx
WAITTX channel
 channel : RS232Channel. (0 to 3)

This command WaitTx will wait until the send buffer is flushed.

Without WaitTx, the following is necessary:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

DO WHILE BFREE(1,1)<49 ‘ Wait until all data have been sent
LOOP

Using WaitTx, the process of sending data is simpler as shown below:

OPENCOM 1,19200,0, 100, 50
PUTSTR 1,“ILOVEYOU”,CR

WAITTX 1 ‘ Wait until all data have been sent

When this command is waiting, other interrupts may be called. In other
words, this command will not affect other parts of the CUBLOC system.

 252

MEMO

 253

Chapter 7:
CUBLOC
Display
Library

 254

The CUBLOC integrated display functions make it easy to control Comfile
LCD products such as the GHLCD or CLCD. Drawing lines, circles, boxes,
and printing strings can all be done with single line of code.

Character LCD : CLCD
The CLCD products are blue or green LCDs that can display characters and
numbers. A control board on the back of the device receives data and
controls the attached LCD panel.

The CLCD receives data through the RS232 or the CuNet I2C
communication protocol.

 255

Set Display
SET DISPLAY type, method, baud, buffersize
 type : 0=RS232LCD, 1= GHB3224, 2=CLCD
 Method : Communication Method 0=CuNET, 1=RS232 CH1
 baud : Slave Address when Method = 0
 Baudrate when Method = 1
 Buffersize : Send Buffer Size (up to 128)

This command is used to initialize the display settings. It can only be used
once. All displays will communicate using the method set here.

Please choose the type of LCD, the communication method, the baud rate,
and the buffer size.

CLCDs will use Method 0.

Method = 1 (RS232 Channel 1)

Use RS232 Channel 1 for display. For the CB220, port 11(TX) is used.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

TX

TX

RX

RX

CHANNEL 1

CHANNEL 0

For the CB280, pin 33 or pin 49 can be used. Pin 49 outputs 12V level
signal and 33 outputs 5V level signal.

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

PWM5
PWM4

TXTX
RXRX

CHANNEL 1CHANNEL 1CHANNEL 0

PWM3

 256

The possible Baud Rate settings are as follows:

2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 76800,
115200, 230400.

The recommended buffer size is around 50 to 128. If the send buffer size
too small, data will not be displayed correctly. If the send buffer size is too
big, it will take up unnecessary memory.

SET DISPLAY 0,1,19200,50 ‘ Set Baud rate to 19200 and
 ‘ send buffer to 50..

The SET DISPLAY command can only be used once at the beginning of the
program.

Method = 0 (Use CuNET)

CuNET is a type of I2C protocol that is part of CUBLOC.

For the CB220 , use I/O Port 8 (Clock) and Port 9 (Data).

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

SDA
SCL

CuNET can be used with displays that support it. CuNET does not use baud
rate settings, it uses slave address settings instead.

SET DISPLAY 2,0,1,50 ‘CLCD, Slave address of 1, Send buffer of 50

Although multiple devices can be connected to I2C, for CuNet displays only
ONE device may be attached.

 257

Cls
Initialize the LCD and clear all text.
(Set a little bit of delay for the LCD to initialize.)

 CLS

 DELAY 200

Csron

Turn Cursor ON.

Csroff

Turn Cursor OFF.

Locate
LOCATE x,y
 X : X-axis position of LCD
 Y : Y-axis position of LCD

Set the position of the text cursor. After a CLS command, the LCD defaults
to position 0,0.

LOCATE 1,1 ‘ Move cursor to 1,1

PRINT “COMFILE”

Print
PRINT String/Variable
 String : String
 Variable : When using variables/constants,

The string representation of the variable/constant will be printed.

LOCATE 1,1 ‘ Move to position 1,1

PRINT “COMFILE”,DEC I

 258

CLCD Module
On the back of the CLCD, a control board is attached. This control board
receives CuNET signal and prints on the CLCD.

 CUNET RS232 5V RS232

DIP S/W

CLCD can also communicate using RS232. There are two RS232
connectors, one for 3-pin 5V level signals and the other for 4-pin +/- 12V
level signals.

CUNET RS232 5V RS232

SD
A

R
X

SC
L

N
/C 5V
_R

X

5V 5V 5VG
N

D

G
N

D

G
N

D

Use the CLCD DIP switch to set the I2C slave address. The 4th DIP switch is
not used.

DIP Switch RS232 Baud rate I2C Slave
Address

1 2 3
ON

2400 0

1 2 3
ON

4800 1

1 2 3
ON

9600 2

1 2 3
ON

19200 3

1 2 3
ON

28800 4

1 2 3
ON

38400 5

1 2 3
ON

57600 6

 259

1 2 3
ON

115200

7

CUNET or RS232 communication can both be used. If both are connected,
please make sure when one of them is working, the other is not.

The following is the CLCD command table:

If received data is not a command, the CLCD will display it on the screen.

When connecting RS232, the maximum baud rate settings for 12V(4-pin)
levels is 38400. For TTL 5V levels (3-pin), up to 115200bps can be used.

The following is an example of code using the CB280 to connect to a CLCD
module through the CUNET protocol. When you execute this program, the
CLCD will display incrementing numbers.

Const Device = Cb280
Set Display 2,0,1,50 ‘ Set the SLAVE ADDRESS to 1 by
 ‘ manipulating the DIP switch.
Dim i As Integer

Command Example
(hex)

Byte
s

Execution
Time

Explanation

ESC ’ C’ 1B 43 2 15mS Clear screen. A 15ms delay
must be given after this
command.

ESC ‘S’ 1B 53 2 Cursor ON (Default)
ESC ‘s’ 1B 73 2 Cursor OFF
ESC ‘B’ 1B 42 2 Backlight ON (Default)
ESC ‘b’ 1B 62 2 Backlight OFF
ESC ‘H’ 1B 48 2 LOCATE 0,0
ESC ‘L’ X Y 1B 4C xx yy 4 100 uS Change the position of the

cursor.
ESC
‘D’ 8byte

1B 44 Code
8bytes

11 Character code 8 through 15 is
8 custom characters that the
user is free to create and use.
This command will store the
bitmap in this custom character
memory area.
Code : 8-15 Character code

1 01 1 Move to beginning of row 1
2 02 1 Move to beginning of row 2
3 03 1 Move to beginning of row 3
4 04 1 Move to beginning of row 4

 260

Delay 100 ' Delay for start up of CLCD
Cls
Delay 200 ' Delay for initializing and clearing CLCD
Csroff
Locate 5,2
Print "Start!!!"
Delay 500
Cls
Delay 100
Do
 Incr i
 Locate 0,0
 Print "COMFILE"
 Locate 1,3
 Print "CUBLOC ",Dec i
 delay 100
Loop

* The slave address of CLCD and SET DISPLAY command should match.

 261

GHLCD Graphic LCD : GHB3224
Series

A GHLCD is able to display characters and graphics on three different layers.
Unlike our CLCD, the GHLCD supports many different commands for easy
drawing of lines, circles, and boxes. There are also commands to copy, cut,
and paste graphic, and a BMP Downloader program for downloading images
to the GHLCD.

The GHB3224 model is a blue and white STN type LCD with a display area
of 320 by 240 pixels. There are 3 layers. The first layer is for text and the
other 2 layers can be used for graphics.

* GHLCD Library is 99% compatible with CUTOUCH modules.

Layer1

Layer2

Layer3

 262

The text layer size is 40x15 as shown in the grid below. Each character
size is 8 by 16 pixels.

For graphics, 320 by 240 pixels are available on the GHLCD series.

0

0

319

239

Please note that graphics or characters will be printed in random places
when trying to print outside the specified range of pixels shown here.

 263

On the graphic layers, text and other objects can be placed anywhere on
the 320x240 pixel range. On the text layer, text must be located on the
40x15 grid.

GHB3224C supports CuNET.

The GHB3224C model supports CuNET. When using CUBLOC with the
GHCLD, using CuNET instead of serial communications will free up the serial
port for other uses.

GHB3224C CuNET settings:

Set Display 1,0,1,50 ‘GHLCD, CUNET, Set Address to 1,
 ‘Send buffer to 50..

*Warning : CUNET Slave address and Display Slave address must match.
Display Slave address can be set with the DIP switch.

 264

Cls
CLS
Initialize the LCD and clear all layers.
(Set a little bit of delay for the LCD to initialize.)

CLS
DELAY 200

Clear
CLEAR layer
Erase the specified layer(s).

CLEAR 1 ‘ Erase (Text) Layer 1.
CLEAR 2 ‘ Erase (Graphic) Layer 2.
CLEAR 0 ‘ Erase all layers. Same as CLS.

Csron
CSRON
Turn Cursor ON. (Default is OFF).

Csroff
CSROFF
Turn Cursor OFF.

Locate
LOCATE x,y
 X : X-axis position of LCD
 Y : Y-axis position of LCD

Set the position of the text cursor. After the CLS command, the LCD
defaults to position 0,0.

LOCATE 1,1 ‘ Move cursor to 1,1
PRINT “COMFILE”

 265

Print
PRINT String / Variable
 String : String
 Variable : When using variables/constants,

String representation of the variable/constant will be printed.

Print characters on the text layer. To print characters to the graphic layer,
the GPRINT command can be used.

LOCATE 1,1 ‘ Move to position 1,1
PRINT “COMFILE”

Layer
LAYER layer1mode, layer2 mode, layer3 mode
 Layer1mode : Set Layer 1 mode (0=off, 1=on, 2=flash)
 Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
 Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Set the mode of the specified layer. The flash mode will flash the layer at
16Hz. Layer 1 and 2 are ON and Layer 3 is OFF when LCD is first turned
ON.

Use this command to hide the process of drawing lines, circles, etc.,. Set
the layer OFF when drawing, and set the layer ON when drawing is
complete.

 266

GLayer
GLAYER layernumber
 Layernumber : Set the graphic layer. (0,1,2)

There are 3 layers on the GHLCD GHB3224 series. Any of the layers may
be used as a graphic layer. Graphic commands such as LINE, CIRCLE, and
BOX can be used on the layer set as a graphic layer. Normally, Layer 1 is
used for text while Layer 2 is used for graphics. Layers 2 and 3 have
slightly different characteristics. We recommend Layer 2 for graphics that
require a lot of erasing.

Layer 1 can also be used as a graphic layer. In this case, you can even
erase text characters with graphic commands. To set Layer 3 to a graphic
layer, use the command Layer 3 ON.

Overlay
OVERLAY overmode
 overmode : Logical Mode (0=or, 1=and, 2=xor)

This command determines the drawing logic mode between Layer 1 and
Layer 2. Layer 1 is text and Layer 2 is graphics. By using this command,
the user can specify the combining mode when Layer 1 and Layer 2 are
displaying on the same position. The default is XOR, which will invert when
Layer 1 and Layer 2 print to the same positions. OR will allow graphics on
both layers to overlap. AND will display graphics only where they overlap.

 267

Contrast
CONTRAST value
 value : Contrast Value (1 to 1024)

Control the contrast of the LCD. Use this command with care, the contrast
setting is sensitive. You will most likely need to adjust the contrast wheel
on the back of the LCD after using this command.

Contrast 450

Light
LIGHT value
 value : Backlight 0=OFF, 1=ON

Turn the backlight ON and OFF. Default is ON.

 268

Font
FONT fontsize, efontwidth
 fontsize : 0 to 8 Font Selection
 efontwidth : 0 = fixed width, 1=variable width

The GHB3224 LCD has 4 different font sizes and 2 different widths.

Font Type Font
0,1 10 x 16
2,3,4,5 16 x 16
6,7 24 x 24
8 48 x 48

 Const Device = CB290
 Cls
 Delay 100
 Font 0,0
 Glocate 10,10
 GPrint "FONT 0,0 :ABCDEFGHIJKLMN"
 Font 2,0
 Glocate 10,30
 GPrint "FONT 2,0 :ABCDEFGHIJKLMN"
 Font 6,0
 Glocate 10,50
 GPrint "FONT 6,0 :ABCDEFGHIJKLMN"
 Font 8,0
 Glocate 10,72
 GPrint "FONT 8,0 "
 Font 0,1
 Glocate 10,120
 GPrint "FONT 0,1 :ABCDEFGHIJKLMN"
 Font 2,1
 Glocate 10,140
 GPrint "FONT 2,1 :ABCDEFGHIJKLMN"
 Font 6,1
 Glocate 10,160
 GPrint "FONT 6,1 :ABCDEFGHIJ"
 Font 8,1
 Glocate 10,185
 GPrint "FONT 8,1 "

 269

Style
STYLE bold, inverse, underline
 bold : 0=Normal, 2 or 3 =Bold
 inverse : 0=Normal, 1=Inverse
 underline : 0=Normal, 1=Underline

You can use the STYLE command to add
Bold, Inverse, or Underline to your fonts.

MAX

MAX

MAX

MAX

BOLD

INVERSE

UNDERLINE

 270

Cmode
CMODE value
 value : 0=BOX type, 1=Underline type

Choose the type of cursor to use. Default
is the Underline type.

0 : BOX Type

1 : Under Line Type

Line
LINE x1, y1, x2, y2

Draw a line from x1,y1 to x2,y2.

LINE 10,20,100,120 ‘ Draw line

0

0

319

239

Lineto
LINETO x, y

Draw a line from the last point to x,y.

LINETO 200,50

‘ Continue drawing line from the last point

0

0

319

239

 271

Box
BOX x1, y1, x2, y2

Draw a box with diagonal positions of X1,Y1 and
X2,Y2.

BOX 10,20,200,100 ‘ Draw box

0

0

319

239

Boxclear
BOXCLEAR x1, y1, x2, y2

Clear the box with diagonal positions of X1,Y1
and X2,Y2.

BOXCLEAR 10,20,200,100 ‘ Clear box

Boxfill
BOXFILL x1, y1, x2, y2,logic
 logic : 0=OR, 1=AND, 2=XOR

Draw a box with diagonal positions of X1,Y1 and
X2,Y2 and fill according to specified logic.

0 OR will display all overlapped areas.
1 AND will display only the overlapped areas.
2 XOR will display the overlapped areas
inversed.

BOXFILL 10,20,200,100,0 ‘ Draw and fill box

0

0

319

239

 272

Circle
CIRCLE x, y, r

Draw a circle with x,y as the center and with r
as the radius.

CIRCLE 200,100,50 ‘ Draw circle

0

0

319

239

Circlefill
CIRCLEFILL x, y, r
Draw and fill a circle with x,y as the center and
with r as the radius.

CIRCLEFILL 200,100,50

‘ Draw and fill circle

0

0

319

239

 273

Ellipse
ELLIPSE x, y, r1, r2
Draw an ellipse with x,y as the center, and with
r1 as the horizontal radius and r2 as the vertical
radius.

ELLIPSE 200,100,100,50 ‘ Draw ellipse

0

0

319

239

Elfill
ELFILL x, y, r1, r2
Draw and fill an ellipse with x,y as the center,
and with r1 as the horizontal radius and r2 as
the vertical radius.

ELFILL 200,100,100,50

‘ Draw and fill ellipse

 274

Glocate
GLOCATE x, y
Specify the graphical text position on the
current graphic layer.

GLOCATE 128,32 ‘ locate new position

Gprint “CUTOUCH”

Gprint
GPRINT string

Print a string on the graphic layer. You have
more freedom printing text in the graphic
layer, as you can use GLOCATE to specify the
exact position. Then you can use the
GPRINT command to print a string at that
location.

GPRINT “CUBLOC IS FASTER”,CR

‘ Print String and go to next line(CR)

0

0

319

239

CUBLOC IS FASTER

 275

Dprint
DPRINT string

DPRINT is similar to GPRINT, except that it will over-write the current
graphics.

DPRINT “WE LOVE CUBLOC”,CR ‘ Print String and go to next line

0

0

319

239

WE LOVE CUBLOC

This command prints faster than GPRINT since it simply overwrites the
background. When trying to display animations or numbers that change
rapidly, such as a moving ball or the current time, Dprint will allow
smoother transitions.

Dprint can only be used with X-Axis values that are a multiple of 8. For
example, you can use Glocate 8,2 or Glocate 16,101 before using Dprint.

 276

Offset
OFFSET x, y

You can set an offset for printed characters on the graphic layer. The
default value is 0. You can control either the x or the y axis offsets.

0

0

319

239

CUBLOC IS FUN
COMFILE TECHNOLOGY

OFFSET 3,3 ‘ Set x and y offset to 3.

0

0

319

239

C U B L O C I S F U N

C O M F I L E T E C H N O L O G Y

After the command, the strings will automatically adjust to the new offsets.

 277

Pset
PSET x, y

Places a dot at x,y

PSET 200,100 ‘ Place a dot

Color
COLOR value

Sets the current drawing color. 1 is black and 0 is white. Default value is
0.

COLOR 0 ‘ Set color to 0.

Linestyle
LINESTYLE value

Sets the line style. You can make dotted lines by increasing the value.
The default value is 0, a solid line.

LINESTYLE 1 ‘ Use dotted lines

Dotsize
DOTSIZE value, style

Sets the dot size. The value is the size of the dot, and the style can either
be 0 for a rectangular or 1 for a circular dot.

DOTSIZE 1,1 ‘ Set dot size to 1 and dot type to circle

 278

Paint
PAINT x, y

Fill the enclosed area within position x,y.

PAINT 100,100 ‘ Fill the enclosed area

within 100,100

Arc
ARC x, y, r, start, end

Draw an arc with x and y as the center.
Start and end are the values between 0 and
360 degrees.

ARC 200,60, 100, 10, 20 ‘ Draw an arc from

10 to 20 degrees.

0

0

319

239

 279

Defchr
DEFCHR code, data
 Code : Custom character code (&hdb30 to &hdbff)
 Data : 32byte bitmap data

Create custom characters using this command. A character of size 16 by
16 can be created and stored in the LCD memory. Then the character can
be used just like any other regular character using the command PRINT or
GPRINT and DPRINT. A total of 207 custom characters can be stored in the
memory. At power off, the characters are not preserved.

 DEFCHR &HDB30,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,_

 &HAA,&HAA,&HAA,&H55,&HAA,&HAA,&HAA,&HAA,_

 &HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,_

 &HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA,&HAA

 print CHR(&HDB30)

Bmp
BMP x, y, filenumber, layer
 X, y : x,y position to display BMP
 Filenumber : BMP File number
 Layer : Layer to display BMP

The GHB3224 has FLASH memory to store BMP images. Use the BMP
Downloader to download BMP files. Once BMP files are stored in the LCD,
you can simply use this command to print them to the LCD.

*The GHB3224 has 102,400 bytes of Flash memory space to store BMP files.
You can store about 10 320x240 full screen images.

 280

Graphic Data PUSH, POP Commands

On the GHB3224 series, there is a separate stack for storing graphic data.
You can push and pop the current screen or part of the current screen to
this stack. By storing to the stack, you can easily implement a copy, cut,
and paste feature.

GPUSH and GPOP can be used for precise cutting of the current screen while
HPUSH and HPOP can be used for high speed push and pop.

The stack is a LIFO (last in first out) that will pop the last data that was
pushed.

There is about 32KB of stack memory. You can store about 3 to 4 full
screens. Please refer to the picture below for a depiction of how the stack
works:

1 1

11

2

2

22

3

3

3

3

4

4

44

 281

Gpush
GPUSH x1, y1, x2, y2, layer

Push the area with an x1, y1, x2, y2 box to the stack.

GPUSH 10,20,200,100,2

0

0

319

239

Gpop
GPOP x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

Pop from stack and display on the specified layer at position x,y with
specified logic.

GPOP 120,20,2,0

0

0

0

0

319

319

239

239

 282

Gpaste
GPASTE x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

Paste from the stack and display on the specified layer at position x,y with
specified logic.

This is exact same command as GPOP except it will not pop from stack.
Therefore, you can use this command if the current item in the stack must
be used again.

0

0

0

0

319

319

239

239

 283

Hpush
HPUSH x1, y1, x2, y2, layer

The HPUSH, HPOP, HPASTE commands are similar to GPUSH, GPOP, and
GPASTE except that the columns can only be a multiple of 8 as shown
below:

*The 320 pixels have been divided by 8, there are only 40 columns, each 8
pixels wide.

HPUSH 6,20,12,100,2

Hpop
HPOP x, y, layer

Same as GPOP, except the x value is 0 to 39.

HPOP 10,20,2,0

Hpaste
Hpaste x, y, layer,

Same as GPASTE except the x value is between 0 and 39.

 284

GHB3224C DIP Switch Settings

On the back of the GHB3224B, there are DIP switches to set the RS232
baud rate and I2C slave address. GHB3224 DIP Switch number 4 is not
used.

DIP Switch RS232 Baud Rate I2C Slave
Address

1 2 3
ON

2400

0

1 2 3
ON

4800

1

1 2 3
ON

9600

2

1 2 3
ON

19200

3

1 2 3
ON

28800

4

1 2 3
ON

38400

5

1 2 3
ON

57600

6

1 2 3
ON

115200

7

Please choose one communication method to use at a single time. (Either
CuNET or RS232)

 285

Seven Segment Display: CSG

A seven segment display can be used to display numbers. Eight LEDs are
used for most seven segment displays as shown below, allowing decimal
points to be displayed as well.

Using a seven segment display requires specialized circuits to handle
segment matrix control and refreshing, which increases in complexity with
each digit added. To simplify the matter, we have developed an easy to
use seven segment display called the CSG module.

As you can see above, the front has a 4 digit seven segment display and the
back has two I2C connections. After connecting the CSG to a CUBLOC, you
can use the commands in the below table to easily and quickly display the
numbers you want.

Command Explanation Example Usage
CSGDEC SlaveAdr, Data Output decimal value. CSGDEC 0, I
CSGHEX SlaveAdr, Data Output hex as decimal value CSGHEX 0,I
CSGNPUT SlaveAdr, Digit,
Data

Control digit places CSGNPUT 0,0,8

CSGXPUT SlaveAdr, Digit,
Data

Control digit places and output data
as binary number

CSGNPUT 0,0,9

 286

Csgdec
Use the CSGDEC command to print decimal values to the display.

 Const Device = cb280
 Set I2c 9,8 ‘Å-- must be used before csgdec command
 b=8
 Do
 Csgdec 0,b ‘Å-- csgdec command
 Delay 100
 b = b + 1
 If b=0 Then b=200
 Loop

To use CSG commands, the SET I2C command must be used beforehand.

Slave Address
Set the slave address of the CSG module at the back. 0 to 3 can be set. A
total of 4 addresses can be set per I2C line pair.
CSG Dip switch:

DIP Switch Slave Address
1 2 3

ON

0

1 2 3
ON

1

1 2 3
ON

2

1 2 3
ON

3

 287

To display more than 4 digits, use 2 CSG modules as shown below and set
different slave addresses for each.

Csgnput
CSGNPUT slaveadr, digit, data
 slaveadr : CSG module Slave Address
 digit : Digit position (0 to 3)
 data : Data (&h30 to &h39, &h41 to &h46)

&h30 is print “0”
&h31 is print “1”
:
&h39 is print “9”
&h41 is Print “A”
&h42 is Print “b”
:
&h46 is Print “F”

Display the desired number on the specified CSG module. The most
significant bit of the data parameter controls the decimal point.

You can use &H30 to 39 and &H41 to &H46 only.

 288

Csgxput
CSGXPUT slaveadr, digit, data
 slaveadr : CSG module Slave Address
 digit : Position (0 to 3)
 data : Data

Set the LED ON at the specified position. When displaying anything other
than numbers, this command can be used to control each segment LED.

A

B

C

D

E

F
G

H

Bit 7 6 5 4 3 2 1 0
LED H G F E D C B A

To print character ‘L’, positions D, E, and F must be turned ON. Since the
bit value would be 0011 1000, in hex that’s &H38 or 0x38.
CSGXPUT 0, 0, &H38 would be the exact command to use.

Csgdec
CSGDEC slaveadr, data
 slaveadr : CSG Slave Address
 data : Data

Print decimal value to the CSG.

Csghex
CSGHEX slaveadr, data
 slaveadr : CSG Slave Address
 data : Data

Print hexadecimal value to the CSG.

 289

Chapter 8:
Interfacing

 290

Input/Output Circuits

How to connect LEDs
Connect the LED as shown below, and output HIGH to the connected I/O
port to turn the LED ON.

CuBLOC I/O Port
330 ohm

How to connect pushbuttons
Connect the pushbutton as shown below, and set the connected I/O port to
INPUT mode. When the button is pressed, the CUBLOC will read HIGH;
otherwise it will read LOW.

CuBLOC I/O Port
10Kohm

How to connect a potentiometer
Connect the potentiometer as shown below to a A/D I/O port and use the
ADIN command to read the position of the potentiometer.

CuBLOC I/O Port10K ohm

The CUBLOC core module uses 5V power. When using a larger voltage,
please use an appropriate voltage converter or regulator.

 291

How to Connect an Output Relay.
The following diagram shows how to connect an output relay to a CUBLOC
I/O port. A photocoupler can be used to separate 24V and 5V and protect
against noise. Noise coming from 24V side will not affect the 5V side and
vice versa.

CuBLOC
 I/O Port

24V +

GND 24V -

PC-18T1
10K

1N4148

222

RELAY

ZNR

24
V

+

24V
+

LOAD

How to Connect an NPN TR Output
This circuit diagram shows an NPN TR photocoupler separating 5V from the
LOAD.

CuBLOC
 I/O Port

24V +

24V -

PC-18T1

10K

4.7K

1N4148 LOAD

How to Connect a DC24V Input
Use a double polarity photocoupler to convert 24V signals to 5V. When
input is received, the CUBLOC will receive a HIGH(5V) signal.

CuBLOC
 I/O Port

2.2K (1W)

270

10022K

680

47K

5V

KPC714

0.1uF

24V
+ 24V

+

 292

How to connect an AD Input
To connect an AD input to the CB280, the AVDD and AVREF pins must be
connected to 5V. AVDD supplies power to the ADC of CUBLOC and AVREF
is the reference voltage that the ADC uses to do conversions. If 5V is
connected to the AVREF pin, 0 to 5V input voltage will be converted and if
3V is connected to AVREF pin, 0 to 3V input voltage will be converted.

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

DC5V
DC5V

DC5V

The CB220’s AVDD and AVREF are internally connected to 5V.

The following is the simplest type of AD input circuit using a potentiometer.
When you turn the knob, the input will be converted by the CUBLOC ADC to
a value from 0 to 1023

CUBLOC I/O Port10K ohm

5V

 293

The following is an AD input that receives 4 to 20mA of input. You can use
a 230 Ohm and 20 Ohm resistor in serial instead of a 250 Ohm resistor.

CUBLOC I/O Port4~20mA

250ohm

For 0 to 10V input, use 2 resistors as shown below. This is also called a
voltage divider.

CUBLOC I/O Port0~10V

1Kohm

1Kohm

How to use PWM as Digital-to-Analog converter

The CUBLOC has 6 PWM ports. If you use the simple circuit shown below,
you can make a D/A converter.

 294

RS232 HOWTO
Pins 1 and 2 are for connecting to the +/- 12V signals of RS232 Channel 0
(Download port). The CB220 model has ports 10 and 11 for RS232
Channel 1 5V signals.

SOUT
SIN

ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

+12V

+5V

-12V

GND

For the CB280, there are 5V and 12V signals for RS232C Channel 1.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11

TX1
RX1

AVDD
N/C
P24
P25
P26
P27
P47
P46
P45
P44
P43
P42
P41
P40

VDD
VSS
RES
N/C
P16
P17
P18
P19
P20
P21
P22
P23
P15
P14
P13
P12

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

TTLTX1
TTLRX1
AVREF
P48
P31
P30
P29
P28
P32
P33
P34
P35
P36
P37
P38
P39

+5V

GND

+12V

+12V

-12V

-12V

The reason 5V and 12V signal levels exist is as follows. Since a PC uses
RS232 12V signals, we would need to make a separate circuit to convert to
5V signal levels for the CUBLOC. Since the CUBLOC has a 12V signal
inteface, the user doesn’t have to worry about making a converter circuit.

Downloading to a CUBLOC is very easy, since you can connect a PC RS232
cable directly to pins 1 and 2. For RS422 and RS485 converters, 5V signals
are provided on RS232 Channel 1.

 295

For the CB280, 12V signals are provided for RS232 communication. Please
be careful to use only one of the 5V or 12V connections at a time.

The following shows a simple circuit diagram to convert from 12V to 5V
RS232 signals using a MAX232 chip.

2

3
5

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

5V
5V

0.1uF

CuBLOC RX
CuBLOC TX

TD

RD

0.1uF

0.1uF

0.1uF

0.1uF

PC
RS232C
Port

The MAX232 is a very useful chip for converting between 5V and 12V
RS232 signals.

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

TTL INPUT

TTL OUTPUT

TTL OUTPUT

TTL INPUT

RS232C OUTPUT

RS232C INPUT

RS232C INPUT

RS232C OUTPUT

MAX232

 296

CuNET

CuNET is a communication protocol for CUBLOC peripherals such as CLCD,
GHLCD, CSG modules. With just 2 pins, SCL and SDA, you can
communicate with up to 127 devices simultaneously. CuNET uses
CUBLOC’s I2C protocol to communicate.

To use CuNET, please make sure to add pull up resistors(4.7K each) to the
SCL and SDA lines. SCL and SDA pins are in a open-collector setting,
protecting against outside noise. It automatically removes pulses less than
50ns.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

5V (RESET)

4.7Kohm x 2

GND

SCL
SDA

1
2

3

4

When using CuNET, the connector’s pin 1 must be connected to ground, pin
2 to 5V or RESET, pin 3 to SCL, and pin 4 to SDA. This 4 pin connector will
be used as standard for CuNET communications.

When using CuNET, the CUBLOC core module will act as the “master” and
the device connected to as the “slave”. All CuNET devices will respond to
the CUBLOC while in an idle state.

CuNET operates in a Master-Slave mode. Slave cannot start
communication with the master. For externally-initiated communication,
you must use PAD communication. PAD can receive inputs from other
devices. Please refer to the ON PAD command for detailed information.

 297

A CuNET device’s pin 2 connects to 5V of the main module, when the device
is to be powered from the CuNET bus:

MAIN

Power

CuNET Module

GND
5V
SCL
SDA

GND
5V
SCL
SDA

A CuNET device’s pin 2 can be connected to RESET of the main module
when a separate power suppy is connected to the CUNET device. (Active
LOW to RESET causes CUBLOC to reset)

Power Power

MAIN
CuNET Module

GND
RESET
SCL
SDA

GND
RESET
SCL
SDA

CuNET cables up to 3 feet long can be used. For longer communications
(up to about 1 mile), you can use the Phillips I2C long distance interface
chip. (P82B96 or P82B715)

 298

CUBLOC STUDY BOARD Circuit
Diagram

The study board is useful for first timers and developers of CUBLOC.
Simple experiments including switches, LED, RS232 communication, I2C,
piezo, ADC, toggle switches, and LCDs are possible.

PIEZO

I/O Ports
Contact

CuNET

(3)ALCD
Connector

Bread Board

(4)CuNET
Jumper

Contact
(LED, S/Ws)

RS232 CHANNEL 1 POWER S/WDC 9V INPUT

Download Port

(1) RS232 CH1
 Contact (2) CB280 TX/RX

 Contact

Reset Switch

When 9V is supplied, the 5V regulator inside the Study Board will
automatically provide 5V to the module and peripherals. DC Adaptor
polarity can be used either way. For normal operation, please use a 9V
adaptor with at least 200mA of current.

 299

Cubloc Study Board Schematic

(1) RS232 Channel 1 Connection point: to use the RS232 Channel 1, please
connect wires to the appropriate pin input on the upper right hand corner
labeled RS232C.

(2) For the CB280, connect RS232 Channel 1 as shown below:

TXTX

RXRX

(3) When using CuNET, all jumpers must be shorted. If using pin 8 and 9
for general I/O, please leave all jumpers to the open state.

 300

About I2C…

CUBLOC provides an easy set of commands to communicate using the I2C
protocol. I2C communication is a widely used protocol, mainly used for
communicating with ADC, EEPROM, DAC, External I/O chips.

I2C uses two lines, SDA and SCL, and operates in either MASTER or SLAVE
mode. CUBLOC can only be used as a MASTER.

Please make sure to use the command SET I2C before using I2C commands.

I2C’s START, STOP

When SCL(Clock) and SDA(Data) are HIGH, I2C is in idle state. If a START
command is executed during the idle state, I2C begins.

When SCL and SDA are both LOW, I2C is in busy state. If a STOP
command is executed during the busy state, I2C stops.

There is also a Repeated Start in I2C. If a START command is executed
during busy state, I2C restarts.

SDA

START STOP Repeated
Start

STOP

SCL

 301

Using an EEPROM through I2C

We will go through an example showing I2C communication between a
CUBLOC and a 24LC32 EEPROM. The following is a diagram from the
EEPROM’s data sheet. It shows how to send data to the EEPROM.

A0

R/W

S : Start
A : Acknowledge
P : Stop

S PA A ACONTROL BYTE HIGH ADDRESS LOW ADDRESS DATA

The first bit is for the Start command. The 4 upper bits of CONTROL BYTE
must be 1010 and the 3 lower bits are for selecting the Chip’s address. The
user may change the EEPROM chip’s address by configuring the chip.

For a read, 1 can be written into R/W and for a write, 0 can be written into
R/W. A is for acknowledgement of the 8 bits (1 byte) sent. Then HIGH
ADDRESS, LOW ADDRESS and DATA can be sent. When all data is sent,
the Stop command can be transmitted.

It takes about 5ms for each EEPROM write.

The following is an EEPROM write sequence in CUBLOC’s BASIC code:

Set I2c 8,9 ' Set P8 as SDA, P9 as SCL
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
If I2cwrite(DATA) = 0 Then ERR_PROC '1 Byte WRITE
I2cstop
Delay 5 ' Wait until WRITE is done

Next, we will look at how to read 1 byte from the EEPROM. Although it
might look more complex than writing 1 byte, we will soon find out that
they are very similar.

 302

A A0 1

R/W R/W NoAckRepeated Start

Read Point
S : Start
A : Acknowledge
P : Stop

S S PA A XCONTROL BYTE CONTROL BYTEHIGH ADDRESS LOW ADDRESS DATA

Read Point is where the actual DATA will be read from the EERPOM. The
first part of the command is for setting the address to read data.

Set I2c 8,9
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR_PROC ' Read command..
DATA = I2cread(0) ' Result store in DATA.
I2cstop

And now, we will look at how to read multiple bytes from the EEPROM. If
we don’t send a STOP command, we can keep reading from the EEPROM
since it automatically increments its address. In this way, we can set the
starting address only once, and then read the rest of the data much faster.

Set I2c 8,9
I2cstart
If I2cwrite(&H10100000) = 1 Then ERR_PROC ' Chip Address = 0
If I2cwrite(ADR.BYTE1) = 1 Then ERR_PROC ' ADDRESS WRITE
If I2cwrite(ADR.LOWBYTE) = 1 Then ERR_PROC
I2cstart ' Repeated Start
If I2cwrite(&H10100001) = 1 Then ERR_PROC ' Read command..
For I = 0 To 10
 ADATA(I) = I2cread(0) ' Read 10 bytes continuously,
 ' ADATA is an array
Next
I2cstop

 303

I2c example
The following example shows a CB280 and 24LC32 EEPROM connected. A
value will be written to a specified address of the EEPROM and then read
back to display on the DEBUG window of CUBLOC Studio.

 Const Device = cb280
 Dim adr As Integer
 Dim data As Byte
 Dim a As Byte
 data = &ha1
 adr = &h3
 Set I2c 3,2
 Do
 ‘ Write 1 Byte
 I2cstart
 If I2cwrite(&b10100000)= 1 Then Goto err_proc
 a=I2cwrite(adr.byte1)
 a=I2cwrite(adr.lowbyte)
 a=I2cwrite(data)
 I2cstop
 Delay 1000
 ‘ Read 1 Byte
 I2cstart
 a=I2cwrite(&b10100000)
 a=I2cwrite(adr.byte1)
 a=I2cwrite(adr.lowbyte)
 I2cstart
 a=I2cwrite(&b10100001)
 a=I2cread(0)
 I2cstop
 ‘ Print Results
 Debug Hex a,cr
 Delay 500
 Loop

err_proc:
 Debug "Error !"
 Do
 Loop

SCL

CB28024LC32

P2
P3SDA

A0
A1
A2

 304

More About I²C… (Advanced)

I²C is a common protocol used by many devices today. CUBLOC uses I²C
as one of its main communication protocols.

CuNET is built on the I²C protocol. The main advantage of CuNET is that
it’s hardware controlled for LCDs. (Not CSG modules or I/O ports)

I²C commands such as I2CWRITE and I2CREAD are software commands.
An advantage of I²C is that it does not require receive interrupts like serial
communications; the clock line is controlled by the master device. This
allows the CUBLOC to multi-task, not creating any situations where the
processor can “freeze” indefinitely while attempting to communicate.
CUBLOC can simply request for data when it wants to, it does not have to
wait for the I²C Slave device to respond.

As a result, a CUBLOC CB280 module can interface with up to 24 separate
I2C buses! (That’s buses, you can add multiple I²C devices per I²C bus!)

The CUBLOC simulates a Master I²C device. Since it can only simulate a
Master I²C device, the I²C devices connected must be Slave I²C devices.

*Note: The I/O port used for I²C communication must be an Input/Output
port, not Input Only or Output Only.

Slave
Address

"01"

Slave
Address

"02"

Slave
Address

"12"

Slave
Address

"34"

Slave
Address

"127"

SCL

SDA

5V
5V

Even though the maximum range for a typical I²C bus is around 12 feet, a
long distance extender chip such as the P82B715 can be used to extend the
bus almost up to 3/4 mile. A P82B96 can also be used as a buffer to
protect the I2C devices in case of electrical surges and interference.

 305

N/C

LX

SX

GND

VCC

LY

SY

N/C

LX, LY : Buffered Bus, LDA or LCL

SX, SY : I2C Bus, SDA or SCLP82B715

Extend to about 3/4 mile using the P82B715.

P82B715CUBLOC P82B715
I2C DEVICE

SDASDA

SCL SCL

LONG CABLE

LDA LDA

LCL LCL

By using the P82B96, ground and power can be isolated on the device ends.

SDA

RX

TX

GND

VCC

SCL

RY

TY

P82B96

P82B96

SDA TX

TY

RX

RY
SCL

P82B96 P82B96

12V12V
5V 5V

LONG CABLE
SDA SDA

SCL SCL

Please refer to Phillips website for more information on the specific chips
discussed here: http://www.standardics.nxp.com/.

 306

If you are using I²C interface within 12 feet, we recommend to use the
following protection circuit:

If the I²C devices are connected with no buffers, electrical interference can
cause damage to either CUBLOC or the I²C Slave device. By using diodes
as shown below, you can protect against most of the electrical interference.
If the devices are in a heavy, industrial environment, we recommend to use
P82B96 chips as buffers.

A0

A1

A2

GND

VCC

WP

SCL

SDA

SCL

SDA

24LC32 CABLE

CUBLOC

.

 307

Chapter 9:
MODBUS

 308

About MODBUS…

MODBUS is a protocol developed by MODICON as an interface to their PLCs.

It is usually used with devices like touchscreens, HMI devices, and SCADA
software; many of them now support MODBUS.

In MODBUS, there are Master and Slave devices. The Master provides
command while the Slave receives commands. The slave can only send
data to the master when requested; it cannot initiate communications on its
own.

Each slave has a unique address called Slave Address. The Master, using
those Slave Addresses, can talk to one slave at a time.

For 1 to 1 connections, RS232 can be used. For 1 to N connections, RS485
can be used.

The master sends messages in units of “Frames”. Each Frame contains the
Slave address, command, Data, and Checksum codes. The Slave receives
a Frame and analyzes it. When responding to the Master, Slave also sends
in Frames.

There are two types of MODBUS, ASCII and RTU. The RTU type is binary
and can be implemented by using less bytes in the communication. ASCII
uses LRM for error checking and RTU uses CRC.

The table below shows how ASCII and RTU are used:

Field Hex ASCII RTU
Header : (colon) None
Slave Address 0X03 0 3 0X03
Command 0X01 0 1 0X01
Start Address HI 0X00 0 0 0X00
Start Address LO 0X13 1 3 0X13
Length HI 0X00 0 0 0X00
Length LO 0X25 2 5 0X25
Error Check LRC (2 Bytes) CRC(2 Bytes)
Ending Code CR LF None
Total Bytes 17 Bytes 8 Bytes

 309

ASCII uses a colon (:) to start and ends with CR or LF.

START SLAVE ADR FUNCTION DATA LRC END
: (COLON) 2 Bytes 2 Bytes n Bytes 2 Bytes CR,LF

RTU requires no special characters to start and finish. It uses 4 bytes of
blank space (a delay) to indicate the start and finish.

START SLAVE ADR FUNCTION DATA CRC END
T1-T2-T3-T4 1 Byte 1 Byte N Bytes 2 Byte T1-T2-T3-T4

CUBLOC support

CUBLOC supports MODBUS commands 1,2,3,4,5,6,15, and 16.

Command Command Name
01, 02 Bit Read
03, 04 Word Write
05 1 Bit Write
06 1 Word Write
15 Multiple Bit Write
16 Multiple Word Write

In MODBUS, there are addresses which stand for Registers in CUBLOC.
CUBLOC’s Registers P, M, F, C, T, and D can be accessed using the following
table:

Bit Units Word Units
Address Register Address Register
0000H P
1000H M
2000H Not Used
3000H Not Used
4000H F
 5000H T
 6000H C
 7000H D
 8000H WP
 9000H WM
 0A000H WF

 310

Device Address...

The table below shows MODBUS device addresses. Device Addresses are
used to identify different registers on the CUBLOC or CUTOUCH. Most Host
equipment including CUBLOC, CUTOUCH, PC, and HMI will use the following
rules:

Device Address Modbus Address Explanation
1…10000 Device Address – 1 Subtract one to get Modbus Address.
40001 … 50000 Device Address – 40001 Subtract 40001 to get Modbus

Address.

Device Addresses after 40000 are word registers, meaning you can access
16 bits at a time.

Please refer to the below Device Addresses when using MODBUS with a
CUBLOC or CUTOUCH. Device Addresses here are shown as decimals.

Bit Access (Coil, Input Status)
Function Codes : 1,2,4,15

Device Address (Decimal) Data
1 to 128 P Registers
385 to 512 F Registers
4097 to 8192 M Register

Word Access (Holding/Input Registers)

Function Codes : 3,4,6,16
Device Address (Decimal) Data
40001 to 41000 D Registers
41001 to 42000 T Registers
42001 to 43000 C Registers
43001 to 44000 WM Registers

Floating Device Addresses…

Please use Device Addresses within the available number of registers for the
module used.

For example, the CUBLOC CB280 has data registers D0 through D99.
There are only Device Addresses from 40001 to 40099. The addresses
400100 through 41000 are not to be used.

 311

Function Code 01: Read Coil Status
Function code 02 : Read Input Status

This function code can read the bit status of PLC’s Register. The following
is an example of reading Registers P20 through P56 from Slave Address of
3.

Query:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X01 1 0 1 2
Start Address HI 0X00 1 0 0 2
Start Address LO 0X14 1 1 4 2
Length HI 0X00 1 0 0 2
Length LO 0X25 1 2 5 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

LRC is the 2’s complement of 8-bit sum of all packet values except Colon,
CR, and LF.

For the table above, 0x03 + 0x01 + 0x13 + 0x25 = 0x3C.

To find the 2’s complement of 0x3C, we can write it in binary first.
0011 1100

Then we can invert the bits.
 1100 0011

Then add one which is:
 1100 0100 = 0xC4

LRC = 0xC4

ASCII : 0 3 0 1 0 0 1 3 0 0 2 5 C 4 CR LF

Hex 3A 30 33 30 31 30 30 31 33 30 30 32 35 43 34 13 10

 312

Response to the query above is:

Response:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X01 1 0 1 2
Byte Count 0X05 1 0 5 2
Data 1 0X53 1 5 3 2
Data 2 0X6B 1 6 B 2
Data 3 0X01 1 0 1 2
Data 4 0XF4 1 F 4 2
Data 5 0X1B 1 1 B 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

If you look at the response to the query, you can see that bit 20 through 27
makes one byte.

P20 is placed as LSB of Data 1 and P27 is placed as MSB of Data 1.
Likewise we can acquire all of P20 through P56 and the leftover bits can just
be disregarded.

 313

Function Code 03: Read Holding Registers
Function Code 04: Read Input Registers

This function code can read 1 Word (16 bits), usually used for Counters,
Timers, and Data Registers. The following shows an example that reads
Slave Address 3’s D Register 0 to 2.

Query:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X03 1 0 3 2
Start Address HI 0X70 1 7 0 2
Start Address LO 0X00 1 0 0 2
Length HI 0X00 1 0 0 2
Length LO 0X03 1 0 3 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

1 Word is has 2 bytes, so we are going to get 6 bytes total as response.

Response:
 Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X03 1 0 3 2
Byte Count 0X06 1 0 6 2
Data 1 LO 0X03 1 0 3 2
Data 1 HI 0XE8 1 E 8 2
Data 2 LO 0X01 1 0 1 2
Data 2 HI 0XF4 1 F 4 2
Data 3 LO 0X05 1 0 5 2
Data 3 HI 0X33 1 3 3 2
Length LO 0X03 1 0 3 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

 314

Function Code 05 : Force Single Coil

PLC’s can remotely control the status of Registers in units of bits through
this function code. The following is an example showing Slave Address 3’s
P1 Register being turned ON.

To turn ON Registers, FF 00 is sent and to turn OFF Registers, 00 00 is sent.

Query:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X05 1 0 5 2
Start Address HI 0X01 1 0 1 2
Start Address LO 0X00 1 0 0 2
Length HI 0XFF 1 F F 2
Length LO 0X00 1 0 0 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

The response shows that the data was entered correctly.

You MUST use FF 00 and 00 00 to turn ON/OFF Registers, other values will
simply be ignored.

Response:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X05 1 0 5 2
Start Address HI 0X01 1 0 1 2
Start Address LO 0X00 1 0 0 2
Length HI 0XFF 1 F F 2
Length LO 0X00 1 0 0 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

 315

Function Code 06 : Preset Single Registers

PLC’s can remotely control the status of its Registers in units of Words
through this function code.

The following is an example showing Slave Address 3’s D1 being written.

Query:
Field RTU Bytes ASCII Bytes
Header 1 : (colon) 1
Slave Address 0X03 2 0 3 2
Function Code 0X06 2 0 6 2
Start Address HI 0X70 2 0 1 2
Start Address LO 0X01 2 7 0 2
Length HI 0X12 2 1 2 2
Length LO 0X34 2 3 4 2
Error Check CRC 2 LRC 2
Ending Code 2 CR LF 2

Response:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X06 1 0 6 2
Start Address HI 0X70 1 0 1 2
Start Address LO 0X01 1 7 0 2
Length HI 0X12 1 1 2 2
Length LO 0X34 1 3 4 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

 316

Function Code 15: Force Multiple Coils

PLC’s can remotely control the status of its Registers in units of multiple bits
through this function code. The following is an example showing Slave
Address 3’s P20 through P30 being turned ON/OFF.

Query:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X0F 1 0 F 2
Start Address HI 0X00 1 0 0 2
Start Address LO 0X14 1 1 4 2
Length HI 0X00 1 0 0 2
Length LO 0X0B 1 0 B 2
Byte Count 0X02 1 0 2 2
Data 1 0XD1 1 D 1 2
Data 2 0X05 1 0 5 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

The following table shows how the DATA in the above query is divided. P27
is placed in the MSB of the first Byte sent and P20 is placed in the LSB.
There will be total of 2 bytes sent in this manner. Leftover bits can be set
to zero.

Bit 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1

Reg. P27 P26 P25 P24 P23 P22 P21 P20 P30 P29 P28

Response:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X0F 1 0 F 2
Start Address HI 0X00 1 0 0 2
Start Address LO 0X14 1 1 4 2
Length HI 0X00 1 0 0 2
Length LO 0X0B 1 0 B 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

 317

Function Code 16 : Preset Multiple Registers

PLC’s can remotely control the status of Registers in units of Multiple Words
through this function code. The following is an example showing Slave
Address 3’s D0 through D2 being written.

Query:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X10 1 1 0 2
Start Address HI 0X70 1 7 0 2
Start Address LO 0X00 1 0 0 2
Length HI 0X00 1 0 0 2
Length LO 0X03 1 0 3 2
Byte Count 0X06 1 0 6 2
Data 1 HI 0XD1 1 D 1 2
Data 1 LO 0X03 1 0 3 2
Data 2 HI 0X0A 1 0 A 2
Data 2 LO 0X12 1 1 2 2
Data 3 HI 0X04 1 0 4 2
Data 3 LO 0X05 1 0 5 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

Response:
Field RTU Bytes ASCII Bytes
Header : (colon) 1
Slave Address 0X03 1 0 3 2
Function Code 0X10 1 1 0 2
Start Address HI 0X70 1 7 0 2
Start Address LO 0X00 1 0 0 2
Length HI 0X00 1 0 0 2
Length LO 0X03 1 0 3 2
Error Check CRC 2 LRC 2
Ending Code CR LF 2

 318

Error Check
If there is error in the data from the Master, Slave will send back an error
code.

Field Hex ASCII Bytes
Header : (colon) 1
Slave Address 0X03 0 3 2
Function Code 0X81 8 1 2
Error Code 0X09 0 9 2
Error Check LRC 2
Ending Code CR LF 2

These are the following types of error codes:

Code Error Name Explanation
01 ILLEGAL FUNCTION When a non-supported function code is

received.
02 ILLEGAL DATA ADDRESS When an incorrect address is received.
03 ILLEGAL DATA VALUE When bad data is received.
09 LRC UNMATCH When LRC is incorrect.

The error check is only for MODBUS ASCII, there are no error check in RTU.
MODBUS RTU uses CRC to check for errors in transmission.

 319

MODBUS ASCII Master Mode

There are no special commands to set CUBLOC to Master Mode for MODBUS
communication. Master Mode simply needs to be able to use RS232 data
communication using commands like CUBLOC’s GET and PUT.

The following is an example of ASCII Master Mode implemented in CUBLOC
BASIC:

'Master Source

Const Device = cb280
 Dim RDATA As String * 80
 Dim a As Byte, ct As Byte
 Dim b As String * 17
 Dim Port As Integer

 Opencom 1,115200,3,80,80
 On Recv1 Gosub GETMODBUS ' Data Receive Interrupt routine
 Set Until 1,60,10 ' When Ending Code (10)
 ' on Channel 1 is discovered,
 ' create an interrupt
 Do
 For Port=2 To 4
 BitWrite Port, 1 'Turn P0,P1,P2 ON!
 Delay 100
 Next
 For Port=2 To 4
 BitWrite Port, 0 'Turn P0,P1,P2 OFF!
 Delay 100
 Next

 Loop

GETMODBUS:
 If Blen(1,0) > 0 Then ' If buffer empty then
 A=Blen(1,0) ' Store the buffer length in A!
 Debug "GOT RESPONSE: "
 B=Getstr(1,A) ' Store received data in B
 Debug B
 End If
 Return

End
 Sub BitWrite(K As Integer, D As Integer)
 Dim LRC As Integer
 Putstr 1,":0305"
 Putstr 1,Hp(k,4,1)

 320

 If D=0 Then
 Putstr 1,"0000"
 LRC = -(3+5+K.Byte1+K.Byte0) 'Calculate LRC
 Else
 Putstr 1,"00FF"
 LRC = -(3+5+K.Byte1+K.Byte0+0xFF) ' LRC
 End If
 Putstr 1,Hex2(LRC),13,10 'Send

 End Sub

MODBUS ASCII Slave Mode
 ‘ Slave Source
 Const Device = cb280
 Opencom 1,115200,3,80,80
 set modbus 0,3
 Usepin 2, Out
 Usepin 3, Out
 Usepin 4, Out
 Set Ladder On

Master Slave

CB280 CB280

RX

TX

TX

RX

GND GND

RS232
CH1

RS232
CH1

P2

P3

P4

When the Slave finishes processing the data sent by the Master, the return
packet from the Slave will cause a jump to the label GETMODBUS. We can
use the SET UNTIL command to check for the ending code LF (10).

The Getstr command is used to store all received data in RDATA. The data
in RDATA can be analyzed for any communication errors.

When the slave is not connected, the program will never jump to
GETMODBUS.

 321

MODBUS RTU Master Mode

The following is an example of RTU Master Mode implemented in CUBLOC
BASIC to write 32-bit floating point values (2 Word Registers) to an RTU
slave device 1:

Const Device = CB280

#include "crctable.inc"

'______________Open serial port for MODBUS__________________________

'_________[Set Baudrate as 115200bps and 8-N-1 with]________________

'_________[receive buffer of 200 bytes and send buffer of 100 bytes]

Opencom 1,115200,3,200,100

'_________[Data Receive Interrupt routine]__________________________

On Recv1 Gosub GETMODBUS

'______________[Clear All Buffers]__________________________________

Bclr 1,2

'______________[User Timer for MODBUS Timeout]______________________

On timer(1) Gosub MyClock

Debug "__________[MODBUS FloatingPoint Value Write RTU Example]_____",Cr

'Test writing 32bit SINGLE to Register Address 0 of device 1

Debug "writing 3.14 and 6.99 Long value to register 0",Cr

writesingle 1,0,3.14

writesingle 1,0,6.99

'Example showing how to send multiple floating point variables

'by making a simple function as WriteMultipleSingle()

SDataArray(0)=1.11

SDataArray(1)=2.22

SDataArray(2)=3.33

Debug "Writing multiple Single values to address 0",Cr

writemultiplesingle 1,0,3

'---

Do

Loop

'Modbus Receive routine

#include "ModbusRTUrecv.bas"

End

'Modbus Low-Level include file

#include "ModbusRTULib016.bas"

*Please check our forum at www.cubloc.com for more Modbus ASCII and
RTU examples and MODBUS BASIC include file downloads.

 322

MEMO

 323

Chapter 10:
Application

Notes

 324

NOTE 1. Switch Input

Let’s say you are developing some kind of machine controlled by a CUBLOC.
The first thing you need is a user interface. Our task today is to build a
machine that will receive input from a switch and process it to perform a
task.

We will make a START and STOP button that will turn a lamp ON and OFF.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

10Kohm.

330ohm.

CB220

START KEY

STOP KEY

As you can see above, the P0 and P4 ports will be connected to a pull-down
resistor (resistor attached to ground). The CB220 will read these switches
as LOW or OFF when the switch is not pressed. To find out if these
switches are pressed or unpressed, we can use CUBLOC BASIC command
IN().

<Filename: startstopkey.cul>

 Const Device = cb220

 Dim a As Byte
 Do
 If In(0) = 1 Then a = 1
 If In(4) = 1 Then a = 0
 Out 14,a
 Loop

When the switch is pressed, a “bouncing” effect occurs from the switch’s
mechanical spring.

 325

The above picture shows how bouncing can confuse CUBLOC controller with
alternating high and low signal levels. To get rid of this bouncing effect, a
capacitor and resistor can be added to filter it out.

A simpler method is to use the command KEYINH() rather than IN() which
will remove the bouncing effect by software.

 Const Device = cb220

 Dim a As Byte
 Do
 If Keyinh(0,20) = 1 Then a = 1
 If Keyinh(4,20) = 1 Then a = 0
 Out 14,a
 Loop

The 2nd parameter of KEYINH(0, 20) sets the time for removing the
bouncing effect, also called debouncing time. In other words, the 20
means to wait 20ms before accepting input.

In the industrial field, there can be a lot of noisy environments which can
affect switch signals. In order to block noise, the user can implement a
circuit diagram similar to one shown below. By using a photocoupler, the
user is able to raise the voltage and minimize the effect that noise will have
on the switch input.

PC-18T1 10Kohm.

2.2Kohm.

CUBLOC I/O

DC24V DC5V

<END>

 326

NOTE 2. Keypad Input

This application demonstrates interfacing to a 4x4 keypad and displaying
the results on a 4 digit seven segment module (CSG module)

P0

P1

P2

P3

P8
P9

P4

P5

P6

P7

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

CB280

1

4

7

ESC

2

5

8

0

3

6

9

CLR

STOP

L

R

GO

The CSG module is a 4 digit seven segment LED module that can be
connected via CUNET or I2C protocol to display numbers and custom
characters.

<Filename: csgprint.cul>
 Const Device = CB280
 Set I2c 9,8
 Dim I As Byte
 Do
 Csgdec 0,I
 I = I + 1
 Loop

 327

If you connect the CSG to the CuNet connectot and execute the above
program, the CSG module will show incrementing numbers.

The key matrix can be read easily through the command KEYPAD. If you
look carefully at the keypad, you will see that scancode does not match the
actual key pressed. In order to read the correct key, we will use a
KEYTABLE before outputting the value to the CSG.

 Const Device = CB280
 Set I2c 9,8
 Dim I As Integer
 Dim K As Integer

 Const Byte KEYTABLE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)
 Do
 I=Keypad(0)
 If I < 16 Then
 I = KEYTABLE(I)
 Csgdec 0,I
 End If
 Loop

And now we will make a simple program that receives input. When a
number key input is received, it is displayed to the CSG module as a 4 digit
number. The number is stored into the variable K, which is in BCD code.
We then use the function BCD2BIN to convert the BCD value back into
binary.

 Const Device = CB280
 Set I2c 9,8
 Dim I As Integer
 Dim K As Integer
 Dim M As Integer
 K = 0
 Const Byte KEYTABLE = (1,4,7,10,2,5,8,0,3,6,9,11,12,13,14,15)
 Do
 I=Keypad(0)
 If I < 16 Then
 I = KEYTABLE(I)
 If I < 10 Then
 K = K << 4
 K = K + I
 Csghex 0,K
 End If
 '

 ' WAIT UNTIL KEY DEPRESS

 '

 328

 Do While Keypad(0) < 255

 Loop

 M = Bcd2bin(K)

 Debug Dec M,CR

 End If

 Loop

When there is no input, the returned scancode is 255. By using Do While
keypad(0) < 255, we will wait until a key is released which will return a
scancode of 255. This is to allow the processor to stop reading input while
a key is pressed. Otherwise, the processor might receive multiple key
inputs since the execution time of the CUBLOC is very fast.

By using _D(0) = M, you can pass the scancode value to Register D0 of
Ladder Logic. If you need to use a keypad in LADDER, you can modify this
code a little bit to get your results quickly.

<END>

 329

NOTE 3. Temperature Sensor

There are many uses for devices that sense temperature. Refrigerators,
heaters, air conditioners, automobiles, and many other devices are a few
examples.

What types of temperature sensors are there? There are PT100, NTC, and
PTC thermistors, and other chip-type sensors such as the DS1620.

We will take a look at the NTC thermistor and figure out how to connect and
use it with CUBLOC.

The NTC thermistor is a temperature-sensitive resistor. Depending on the
temperature, the value of resistance will change. By reading the value of
this resistance, we can figure out the current temperature.

A common NTC thermistor resembles a diode. With this thermistor, we can
sense between -30 and 250 degrees Celcius temperature.

You can acquire an R-T (Resistance – Temperature) conversion table from
the maker of the thermistor. The following is a diode-type 10Kohm NTC
Thermistor R-T conversion chart and table.

Temperature Minimum Average Maximum
0 31260.0 32610.0 33987.7
1 29725.7 30993.7 32286.7
2 28275.6 29466.8 30680.6
3 26904.5 28023.9 29163.6
4 25607.8 26660.0 27730.3
5 24381.0 25370.2 26375.7
6 23220.0 24150.1 25094.9
7 22120.9 22995.7 23883.7
8 21080.1 21903.1 22737.7
9 20094.1 20868.5 21653.3
10 19159.9 19888.7 20626.7
11 18274.4 18960.5 19654.6
12 17434.8 18080.8 18733.8
13 16638.5 17246.9 17861.4
14 15883.1 16456.1 17034.4
15 15166.2 15706.0 16250.4
16 14485.7 14994.4 15506.9
17 13839.6 14318.9 14801.5
18 13225.9 13677.7 14132.2
19 12642.8 13068.7 13496.9

 330

20 12088.7 12490.3 12893.6
21 11561.9 11940.6 12320.7
22 11061.0 11418.2 11776.4
23 10584.6 10921.6 11259.2
24 10131.3 10449.3 10767.5
25 9700.0 10000.0 10300.0
26 9281.3 9572.5 9864.0

For connecting the sensor to the CUBLOC, please refer to the following
circuit diagram. To protect against voltage surges, a zener diode is
recommended, especially if the thermistor is attached to a long probe wire.

NTC TH.

5.1V
ZENER
DIODE 0.47uF CUBLOC

A/D CHANNEL 0

1Kohm.
1%

As you can see in the circuit diagram, we will be using an ADC (Analog-to-
Digital) converter to read the voltage across the sensor. The A/D converter
will convert the voltage into a value between 0 and 1024.

The most important part of this application note is the following table which
converts the temperature and voltage to an A/D value between 0 and 1024.
(Only some of the temperatures are shown.)

Temp Resistance Voltage A/D value
-30 175996.6 4.971750865 1018
-29 165473.9 4.969965259 1018
-28 155643.6 4.968080404 1017
-27 146456.3 4.966091647 1017
-26 137866.4 4.963994167 1017
-25 129831.7 4.961782976 1016
-24 122313.4 4.959452909 1016
-23 115275.4 4.956998627 1015
-22 108684.3 4.954414614 1015
-21 102509.3 4.951695171 1014
-9 52288.3 4.90617073 1005
-8 49549.7 4.901087406 1004
-7 46970.5 4.895769279 1003
-6 44540.6 4.890207868 1002
-5 42250.5 4.884394522 1000
-4 40091.5 4.878320427 999
-3 38055.4 4.871976604 998

 331

-2 36134.4 4.865353924 996
-1 34321.5 4.858443112 995
0 32610.0 4.851234752 994
1 30993.7 4.8437193 992
2 29466.8 4.835887094 990
3 28023.9 4.827728362 989
4 26660.0 4.819233234 987
5 25370.2 4.810391755 985
6 24150.1 4.801193902 983
7 22995.7 4.79162959 981
8 21903.1 4.781688696 979
9 20868.5 4.771361072 977
10 19888.7 4.760636561 975
11 18960.5 4.749505017 973
12 18080.8 4.737956327 970
13 17246.9 4.725980424 968
14 16456.1 4.713567319 965
15 15706.0 4.700707114 963
16 14994.4 4.68739003 960
17 14318.9 4.673606431 957
18 13677.7 4.659346849 954
19 13068.7 4.644602011 951
20 12490.3 4.629362861 948
21 11940.6 4.613620595 945
22 11418.2 4.597366683 942
23 10921.6 4.580592903 938
24 10449.3 4.563291365 935
25 10000.0 4.545454545 931
26 9572.5 4.527075313 927
27 9165.6 4.508146964 923
28 8778.3 4.488663246 919
29 8409.4 4.468618396 915
30 8058.1 4.448007162 911
31 7723.3 4.426824842 907
32 7404.3 4.405067304 902
33 7100.2 4.382731022 898
34 6810.2 4.359813102 893
35 6533.7 4.336311306 888
36 6269.8 4.312224084 883
37 6018.0 4.287550592 878
38 5777.7 4.262290722 873
39 5548.3 4.236445118 868
50 3606.1 3.914475937 802
51 3472.1 3.881948015 795
52 3343.7 3.848917708 788
53 3220.8 3.815397329 781
54 3103.1 3.781399998 774
55 2990.2 3.746939622 767
56 2882.1 3.712030877 760
57 2778.4 3.676689176 753
58 2679.0 3.640930651 746
59 2583.6 3.604772114 738
81 1220.4 2.748157207 563
82 1181.9 2.7084025 555
83 1144.8 2.668747011 547
84 1109.0 2.629210536 538
85 1074.5 2.589812422 530
86 1041.3 2.550571543 522

 332

87 1009.2 2.511506263 514
88 978.3 2.472634416 506
89 948.5 2.433973277 498
90 919.8 2.395539544 491
91 892.0 2.357349316 483
92 865.3 2.319418079 475
93 839.4 2.281760687 467
94 814.5 2.244391354 460
95 790.4 2.207323646 452
96 767.1 2.170570465 445
97 744.7 2.134144055 437
98 723.0 2.098055989 430
99 702.0 2.062317177 422
100 681.8 2.026937858 415
101 662.2 1.99192761 408
102 643.3 1.957295352 401
103 625.0 1.92304935 394
104 607.3 1.889197225 387
105 590.2 1.855745964 380
106 573.7 1.822701928 373
107 557.7 1.790070865 367
108 542.2 1.757857926 360
109 527.2 1.726067674 353
239 33.5 0.162295782 33
240 33.0 0.159800146 33
241 32.5 0.157350769 32
242 32.0 0.154946682 32
243 31.5 0.152586936 31
244 31.0 0.150270604 31
245 30.5 0.147996779 30
246 30.0 0.145764577 30
247 29.6 0.143573131 29
248 29.1 0.141421596 29
249 28.7 0.139309144 29
250 28.2 0.137234968 28

 '
 ' NTC THERMISTOR READ TABLE
 ' 10K DIODE TYPE
 '
 Const Device = cb280

Const Integer TH_TABLE = (992,990,989,987,985,983,981,979,977,975,
 973,970,968,965,963,960,957,954,951,948,
 945,942,938,935,931,927,923,919,915,911,
 907,902,898,893,888,883,878,873,868,862,
 857,851,845,839,833,827,821,815,808,802,
 795,788,781,774,767,760,753,746,738,731,
 723,716,708,700,692,684,677,669,661,652,
 644,636,628,620,612,604,596,587,579,571,
 563,555,547,538,530,522,514,506,498,491,
 483,475,467,460,452,445,437,430,422,415)

 Dim a As Integer,b As Integer
 Do

 333

 b = Tadin(0)
 If b > 990 Or b < 400 Then
 Debug "Out of Range" 'Check short or open th.
 End If
 For a=0 To 100
 If b > TH_TABLE(a) Then Exit For
 Next
 Debug Dec a,cr
 Delay 500
 Loop

<Filename: ntcth.cul>

By using the TADIN command for AD conversion, CUBLOC will automatically
calculate the average of 10 A/D conversion reads for more precise results.
The sample program shown here will be able to sense between 0 and 100
degrees. For a larger range, you can simply modify the code.

The formula for acquiring the A/D conversion value from the R-T table is as
follows:

5
x THRV =

(1000 + THR)

THR is the resistance value. 1000 is for a 1K Ohm resistor and 5 is for 5
volts. The 10 bit A/D converter of CUBLOC will return a value between 0
and 1024. Therefore to get the A/D value, you must multiply the result V
by 204.8. You can easily make a chart by using a spreadsheet to enter
these formulas. <END>

 334

NOTE 4. Sound Bytes

In this application note, I will be showing you simple ways to create key
touch sound, musical notes, and an alert sound. An I/O port or a PWM
Channel of CUBLOC can be used for sound. With a PWM Channel, you can
create various frequencies of sound.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

CB220

0.047uFSpeaker

The above example shows PWM Channel 0 of CB220 being used with
Freqout command to produce a sound.

 Const Device = cb280

 Dim PLAYSTR As String
 Low 5
 Freqout 0,5236 ‘Create a sound with frequency of 440Hz
 Delay 500 ‘Delay
 Pwmoff 0 ‘Stop Sound by turning off PWM

With commands like Freqout and Delay, simple sounds can be created.

<Filename: playcdec.cul>
 Const Device = CB280
 Low 5
 Freqout 0,4403
 Delay 200
 Freqout 0,3703
 Delay 200
 Freqout 0,3114
 Delay 200
 Freqout 0,2202
 Delay 200
 Pwmoff 0

 335

By changing the frequencies, we have made a simple program that can play
musical notes.

Octave 4 Octave 5
A B C D E F G A B C D E F G
A B C D E F G H I J K L M N

To express one note, you can use 2 characters. The first character is for
the note and second character is for the length of the note.

<Filename: play.cul>

 Const Device = cb280

 Dim PLAYSTR As String
 Low 5
 PLAYSTR = "G5E3E3G3E3C5"
 PLAY 0,PLAYSTR

 Do
 Loop
 End

Sub PLAY(CH As Byte,NOTE As String)
 Dim PL As Byte
 Dim CHAR As Byte
 Const Integer PLAYTABLE = (5236,4665,4403,3923,3495,3299,2939,
 2618,2333,2202,1961,1747,1649,1469,0)
 For PL=1 To Len(NOTE) Step 2
 CHAR = Asc(Mid(NOTE,PL,1)) - &H41
 Freqout CH,PLAYTABLE(CHAR)
 CHAR = Asc(Mid(NOTE,PL+1,1)) - &H30
 Delay CHAR*100
 Next
 Pwmoff CH
End Sub

When using PWM port for other purposes, the Freqout command is no
longer available for use. In this case, we can use any regular I/O port to
create sound.

We will use TOGGLE and UDELAY commands to set the I/O Port to HIGH
and LOW. The following example shows how to make an alert sound with a
regular I/O port, P4.

 336

<Filename: playport.cul>
 Const Device = CB280
 Low 4
 Do
 SOUND 4,110,60
 SOUND 4,80,60
 SOUND 4,40,160
 Loop
 End

Sub SOUND(PN As Byte,FR As Byte,LN As Byte)
 Dim SI As Byte,SJ As Byte
 For SJ = 0 To LN
 Reverse PN
 Udelay FR
 Reverse PN
 Udelay FR
 Next
End Sub

<END>

 337

NOTE 5. RC Servo Motor

RC Servo Motors are used by many hobbyists to make remote control cars,
planes, etc.,. In recent years, they have been used for robot arms, legs,
and wheels.

With CUBLOC, you can use the PWM outputs to easily implement an RC
Servo motor in your project.

The RC servo motor has three wires. The black wire is ground and red wire
is for power. The other yellow wire is for receiving a PWM signal. A typical
pulse rate is about 60 pulses per second.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

CB220Black:GND

Red : 5V

The RC Servo motor will move to a location set by the pulse and duty value
and will hold its position.

1mS 2mS1.5mS

-45 +450o oo

A pulse of 1ms will stop the RC servo at -45 Degrees.

 338

A pulse of 1.5ms will stop the RC servo at 0 Degrees.
A pulse of 2ms will stop the RC servo at +45 Degrees.
Depending on the RC servo you use, these specifications will vary.

<Filename: rcservo.cul>

 Const Device = CB280
 Low 5
 Pwm 0,2500,32768

When the code above is executed, a 1ms pulse will be generated from port
number 5. The RC servo will position itself to -45 degrees.

 Const Device = CB280
 Low 5
 Pwm 0,4000,32768

When the code above is executed, a 1.5ms pulse will be generated from
port number 5. The RC servo will position itself to +45 degrees.

As you can see, by simply changing the duty value of PWM command, the
RC servo can easily be controlled. For the CB220, 3 RC servos can be
controlled simultaneously while the CB280 and CB290 can control 6 RC
servos. The CB405 can control up to 12 servos.

Warning: When the RC servo is in operation, it will need about 500mA of
current. Please make sure to use a power supply of at least 500mA.

 <END>

 339

NOTE 6. Digital Thermometer

The DS1620 is a digital thermometer. The chip has an internal
temperature conversion table so the user does not have to make a separate
table. Temperatures between -55 and 125 degrees Celcius can be
measured by the DS1620 in units of 0.5 Degrees.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

CB220

DS1620

DQ
CLK
RST
GND

VDD
T(HI)

T(LO)
T(COM)

<Filename: ds1620.cul>

 Const Device = CB280
 Const iorst = 7
 Const ioclk = 6
 Const iodq = 5
 Dim I As Integer
 Delay 100
 High iorst ‘ init ds1620
 Shiftout ioclk,iodq,0,12,8
 Shiftout ioclk,iodq,0,3,8
 Low iorst
 High iorst
 Shiftout ioclk,iodq,0,&hEE,8
 Low iorst
 Do
 High iorst
 Shiftout ioclk,iodq,0,&haa,8
 i = Shiftin(ioclk,iodq,4,9)
 i = i
 debug dec i,cr
 Low iorst
 Delay 100
 Loop

The final value received must be divided into 2 to obtain the current
temperature. <END>

 340

NOTE 7. DS1302 RTC

The DS1302 RTC (Real Time Clock) is a chip that will act as an electronic
time keeper. It has the ability to keep time and date in real-time. We will
show you how to implement this clock chip into your application.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

CB220DS1302

32768Hz
VCC2
X1
X2
GND

VCC
SCLK

I/O
RST

Pin Function I/O Direction Explanation
RST Reset Input Data transfer when High
SCLK System Clock Input Clock signal
I/O Data

Input/Output
Input /
Output

Data input/output

<Filename: ds1302.cul>

Const Device = CB220
 Const iorst = 7
 Const iodio = 6
 Const ioclk = 5
 Dim I As Integer
 Dim adr As Byte
 High iorst
 Shiftout ioclk,iodio,0,&h8e,8
 Shiftout ioclk,iodio,0,0,8
 Low iorst
 Delay 1
 High iorst
 Shiftout ioclk,iodio,0,&h80,8
 Shiftout ioclk,iodio,0,&H50,8
 Low iorst

 Do
 High iorst
 adr = &h81
 Shiftout ioclk,iodio,0,adr,8
 i = Shiftin(ioclk,iodio,4,8)

 341

 Debug Hex i,cr
 Low iorst
 Delay 1000
 Loop

The above code will read ADDRESS 0, the seconds value, and display it onto
the DEBUG window.
At the beginning of the program, we will enable writes to the DS1302 chip
and set the ADDRESS 0 to 50 seconds.
Within the Do Loop, we will read the data from DS1302. The DS1302 chip
has 6 addresses as shown below:

10 SEC

10 MIN

 SEC

 MONTH

 DAY

 YEAR10 YEAR

 MIN

 HR 0 HR 10
 A/ P

 DATE10DATE

 CH

 0 0 0 10M

 0 0 0 0 0

 0

 12/ 24

 0 0

ADDRESS 0 (sec)

ADDRESS 4 (month)

ADDRESS 6 (year)

ADDRESS 6 (day)

ADDRESS 1 (min)

ADDRESS 2 (hour)

ADDRESS 3 (date)

These addresses can be used to read and write to the DS1302.
Please note that the data is in BCD code format.
<END>

 342

NOTE 8. MCP3202 12 Bit A/D
Conversion

The CUBLOC has a 10 bit A/D converter. For greater resolution, meaning
greater precision, you can use a chip like the MCP3202. The MCP3202 is a
12 bit A/D converter that supports the SPI protocol. Here we will show you
how to implement this 12 bit A/D converter into your project.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

CB220MCS3202

CS
CH0
CH1
GND

VCC
CLK
DO
DI

Pin Function I/O Direction Explanation
CS Chip Select Input Low for data communication
CLK Clock Input Clock signal
DI Data Input Input Data input from MCP3202
DO Data Output Output Data output from MCP3202

<Filename: mcp3202.cul>

 Const Device = CB280
 Const iodi = 7
 Const iodo = 6
 Const ioclk = 5
 Const iocs = 4
 Dim I As Byte
 Dim ad As Integer
 Do
 Low iocs
 i = &b1011 'Channel 0
 'i = &h1111 'Channel 1
 Shiftout ioclk,iodi,0,i,4
 ad = Shiftin(ioclk,iodo,3,12)
 High iocs
 Debug Dec ad,cr
 Delay 100
 Loop

 343

The MCP3202 will convert voltage coming into CH0 and CH1 ports to a data
value and retain it. The user can simply use SPI communication to read the
value that the MCP3202 has converted.

The voltage measured on the MCP320 CH0 and CH1 pins must not be
greater than the voltage supplied to the MCP3202. The result of the A/D
conversion is displayed to the DEBUG window.

<END>

 344

NOTE 9. Read and write to an
EEPROM

With an EEPROM, you can store between 0.5 to 64 KB of data. Data is
retained even after powering off. For example, if you wanted to retain a
temperature setting for a temperature controller, you could simply store the
value of the temperature in the EEPROM in case of power outage.

The CUBLOC has an internal EEPROM of 4KB. For small and simple data,
you may use this internal EEPROM. In the case of larger data storage
needs, you can use an EEPROM like the 24LC512 to store up to 64KB of
data.

Here we will show you how to access the 24LC32 4KB EEPROM through the
I2C protocol. The serial EEPROMs usually support either SPI or I2C. I2C
EEPROM names start with 24XXXX and SPI EEPROM names start with
93XXX.

SOUT
SIN
ATN
VSS
P0
P1
P2
P3
P4
P5
P6
P7

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10

P9
P8

CB2204.7Kohm24LC32

A0
A1
A2
GND

VCC
NC

SCL
SDA

<Filename: eeprom.cul>

 Const Device = CB280
 Dim adr As Integer
 Dim data As Byte
 Dim a As Byte
 data = &ha6
 adr = &h3
 Set I2c 7,6
 Do
 I2cstart
 If I2cwrite(&b10100000)= 1 Then Goto err_proc
 a=I2cwrite(adr.byte1)
 a=I2cwrite(adr.lowbyte)

 345

 a=I2cwrite(data)
 I2cstop
 Delay 1000
 I2cstart
 a=I2cwrite(&b10100000)
 a=I2cwrite(adr.byte1)
 a=I2cwrite(adr.lowbyte)
 I2cstart
 a=I2cwrite(&b10100001)
 a=I2cread(0)
 I2cstop
 Debug Hex a,cr
 ADR = ADR + 1
 DATA = DATA + 1
 Loop

err_proc:
 Debug "Error !"
 Do
 Loop

This example program will write a number to the EEPROM and read from it.
When this program runs correctly, numbers will increment on the DEBUG
screen. You can easily modify this code to support other EEPROMs.

Note: Please wait at least 5ms after a write to the EEPROM.

<END>

 346

MEMO

 347

Chapter 12:
Ladder Logic

WARNING
If you do not use SET LADDER ON command, Ladder Logic will not be
executed.

 348

LADDER Basics

The following is an example of one switch and a lamp.

If you take out the power, the following results:

If you express the above circuit diagram as Ladder Logic, the following
results:

P0 P9

As you can see, LADDER is simply an easy way to express circuit diagrams.
A switch is comparable to the P0 port and P9 is comparable to the LAMP.

There are many ways to connect other devices such as timers, counters,
etc.,. The following is an OR and AND connection in Ladder Logic:

P0

P3

P2 P9

 349

In this circuit diagram, P0 and P2 are connected in the logical combination
of AND. P0 and P3 are ORed. If you express the above circuit diagram in
Ladder Logic, it will be as follows:

In CUBLOC STUDIO, the right side is not shown. In CUBLOC Ladder Logic,
P0, P1, P2 are called “Registers”.

 350

Creating LADDER Programs

The below screen shows you how Ladder Logic programs are created in
CUBLOC STUDIO.

The red box shown above is the cursor for Ladder Logic. You may use the
keyboard up, down, left, and right keys or the mouse to control the red box.
After moving to the desired position, you can use the keys F3 to F12 to
place the desired symbol. You can also enter text for each symbol.

 351

1. Press F3 to make a contact.

2. Type “START” and press ENTER.

3. Press F5 couple times and you will see that it creates a line.

4. Press F7 and type RELAY.

5. Go to the next rung (line) and press END.

At the very end of the Ladder Logic, you must always put an END command.

 352

Editing LADDER Text

Editing Text
To edit an existing TEXT, place the cursor in the desired location and press
ENTER. Now you can edit the TEXT freely as you like.

Erasing a Cell

Enter SPACE key.

Erasing a Rung (one line)

A rung is a row in Ladder. You can press CTRL-D to erase a rung. This
actually moves the rung to a buffer.

 353

Rung Recovery
To recover an erased rung, press CTRL-U.

Cell Insert and Delete

If you press the DEL key from the current position, the cell is erased and
items on the right are pulled one cell to the left.

If you press the INS key from the current position, a blank cell is inserted
and items on the right are moved one cell right.

Rung Copy
When the same style of rung is needed, you can press CTRL-A and it will
copy the above rung, except text will not be copied.

 354

Comments
You can enter comments by adding an apostrophe (‘).

You can use a semi-colon (;) to drop to the next line.
For example:

“This is Sample Program ; Date 24-Sep-2007 Comfile Technology”

 355

LADDER BLOCK COPY and PASTE

You can make a selection of a block to copy and paste to different parts of
the LADDER program.

Use the mouse to click and drag to select the desired copy area. Press
CTRL-C to copy and CTRL-V to paste. Similar to text editing, you can press
CTRL-X to cut and paste also.

*Please be aware that in LADDER editing, UNDO is not supported.

 356

Monitoring

CUBLOC STUDIO supports real-time monitoring of Ladder Logic.

Clic k He re

Status of contacts that are ON will be displayed GREEN. Timer and
counter values will be displayed as decimal values. You can control the
monitoring speed by going to Setup Menu-> Studio option->
Monitoring speed. When the monitoring speed is too fast, it can affect
CUBLOC’s communications as monitoring takes up resources. We
recommend a value of 5 for the monitoring speed.

*Please make sure to stop monitoring before editing or downloading.

 357

Time Chart Monitoring

Clic k Here

With Time Chart Monitoring, you will be able to see Ladder Logic contacts as
a time chart. The minimum width of the time chart is 40ms. You can use
the Zoom control function to measure the width of each pulse after stopping.
Up to 8 Registers can be monitored at one time.

Start / Stop
Device Select Com Port Select

Sampling Time

Zoom control

Relay select

Use/ Unuse

Time interval display

Cursor Move
control icon

X position

To use the Time Chart Monitor, you must set Debug off in Basic. To do this,
simply add the “Set Debug Off” command at the very beginning of your
code.

Set Debug Off

While using the Time Chart Monitor, Ladder Monitoring may not be used.

 358

WATCH POINT

When you want to watch the status of registers and timers outside the
current Ladder Monitoring screen, you can use the Watch Point feature.

You can use two apostrophes (‘’) to add a WATCH POINT. For example,
you want to see P0 right next to some other Register that is on exact
opposite side of the screen.

Examples:
‘’P0 ‘’P1 ‘’D0

* Please be aware that it’s two APOSTROPHES(‘’), not a QUOTATION
MARK(“).

'

' '

"

" "

SHIFT +

 359

Options Window

LADDER size adjust

Auto run when download

LADDER background color

LADDER monitorring speed setting

LADDER line space adjust

If you select “Auto Run when download”, the program will automatically
reset itself after downloading. This can become a problem for machines
that are sensitive to resets. By turning this option OFF, you will be able to
control when the program is resetted after downloading.

In the help menu, you will find Upgrade information, and the current version
of CUBLOC Studio.

 360

PLC Setup Wizard

To use Ladder Logic in CUBLOC, you must create some minimal BASIC code.
Although very simple, this can be hard for first-timers. You can use the
PLC Setup Wizard and setup the I/Os you will be using and create the
BASIC source automatically.

PLC SETUP WIZARD

As you can see in above screen, Device name, I/O status, alias, and other
features can be set simply by clicking.

You can set aliases for Registers, set Modbus to be ON, and set the baud
rate for the Modbus. You can always review the current BASIC code
generated in real-time by pressing [Output BASIC code review] tab.

 361

For using A/D, PWM, or COUNT, you can simply read from the D Registers
for the results. For ADC0, the AD value is stored in D(10). The user can
simply read from Register D10 to find the value of AD0.

For PWM3, the user can simply write to Register D29 to output PWM.
For HIGH COUNT1, simply read Register D39. If the user wishes, he can
change the Register to store or write values by changing the BASIC code.
Please press [Replace Basic Code] when you are done to product the final
BASIC code. Please be aware that older code will be deleted at this point.

You can also save the setup to a file by clicking on [SAVE AS..]. Click on
[LOAD…] to bring back saved setup values.

 362

Usage of Ladder Register

With this feature, the user can see the aliases of all Registers. By using this
feature, the user will be able to save a great deal of time while debugging
and developing the final product. Please go to Run->View Register
Usage to open this window.

 363

Register Expression

CB220, CB280, CB320, CB380 Registers
The following is a chart that shows CB220 , CB280, CB320 and CB380
Registers.

Register Name Range Units Feature
Input/Output Register P P0 to P127 1 bit Interface w/

External devices
Internal Registers M M0 to M511 1 bit Internal Registers
Special Register F F0 to F127 1 bit System Status
Timer T T0 to T99 16 bit (1 Word) For Timers
Counter C C0 to C49 16 bit (1Word) For Counters
Step Enable S S0 to S15 256 steps

(1 Byte)
For Step Enabling

Data Memory D D0 to 99 16bit (1 Word) Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units.
To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register
Name

Range Units Feature

WP WP0 to 7 16 bit (1 Word) Register P Word Access
WM WM0 to WM31 16 bit (1 Word) Register M Word Access
WF WF0 to WF7 16 bit (1 Word) Register F Word Access

WP0 contains P0 through P15. P0 is located in the LSB of WP0 and P15 is
located in the MSB of the WP0. These Registers are very useful to use with
commands like WMOV.

 364

CB290 and CB405 Registers
The following is a chart that shows CB290 and CB405 Registers. The
CB290 and CB405 have more M, C, T, and D Registers than the CB220 and
CB280.

Register Name Range Units Feature
Input/Output Register
P

P0 to P127 1 bit Interface w/ External
devices

Internal Registers M M0 to M2047 1 bit Internal Registers
Special Register F F0 to F127 1 bit System Status
Timer T T0 to T255 16 bit (1 Word) For Timers
Counter C C0 to C255 16 bit (1 Word) For Counters
Step Enable S S0 to S15 256 steps

(1 Byte)
For Step Enabling

Data Memory D D0 to 511 16 bit (1 Word) Store Data

P, M, and F Registers are in bit units whereas T, C, and D are in word units.
To access P, M, and F Registers in word units, you can use WP, WM, or WF.

Register
Name

Range Units Feature

WP WP0 to 7 16 bit (1 Word) Register P Word Access
WM WM0 to WM63 16 bit (1 Word) Register M Word Access
WF WF0 to WF7 16 bit (1 Word) Register F Word Access

WP0 contains P0 through P15. P0 is located in the LSB of WP0 and P15 is
located in the MSB of the WP0. These Registers are very useful to use with
commands like WMOV.

P0WP0

WP1

WP2

WP3

P15

P31 P16

P32

P48

P47

P63

 365

Ladder symbols

Contact A, Contact B

Contact A is “Normally Open” and closes when a signal is received. On the
other hand, Contact B is “Normally Closed” and opens when a signal is
received.

(A) Normal Open (B) Normal Close

Input, Output Register Symbol

Input/Output Registers are the most basic symbols among the Registers in
Ladder Logic.

Contact A

Contact B Output Relay

Function Registers

Function Registers include timers, counters, and other math operation
Registers.

Function Relay

 366

Internal Registers

Internal Registers (M) only operate within the program. Unless connected
to an actual external port, it is only used internally. You may use M
Registers as input or output symbols.

P Registers that are not used as I/O ports

CUBLOC supports P Registers from P0 to P127. P Registers are directly
connected to I/O ports 1 to 1. But most models of CUBLOC have less than
128 I/O ports. In this case, you may use the unused portion of P Registers
like M Registers.

 367

Using I/Os

CUBLOC I/O ports can be used by both BASIC and LADDER. Without
defined settings, all I/O ports are controlled in BASIC. To control I/O ports
in LADDER, you must use the “Usepin” command and set the I/O ports to
be used in LADDER.

USEPIN 0,IN
USEPIN 1,OUT

The above code sets P0 as input and P1 as output for use in LADDER.

The inner processes require that USEPIN will be re-flashed in LADDER. Re-
flashing means that the Ladder will read I/O status beforehand and store
the status in P Registers. After scanning, LADDER will re-write the status of
I/O ports into P Registers.

INPUT REFLASH

LADDER SCAN

OUTPUT REFLASH

In BASIC, IN and OUT commands can be used to control I/O ports. This
method directly accesses the I/O ports, whether it is read or writes. In
order to avoid collision between the two, the I/Os used in BASIC and
LADDER should be specified.

Once a port is declared with the USEPIN command, it can only be used in
LADDER and cannot be directly accessed in BASIC, except through the
ladder registers.

USEPIN 0,IN, START

USEPIN 1,OUT, RELAY

You can also add an alias such as START or RELAY as shown above for easy
reading of the Ladder Logic.

 368

Use of Aliases

When creating Ladder Logic using “Register numbers” such as P0, P1, and
M0, the user can use aliases to help simplify their programs.

In order to use alias, you need to declare them in BASIC. You can simply
use the ALIAS command to use aliases for registers you desire to use.

ALIAS M0 = MAINMOTOR
ALIAS M2 = STATUS1
ALIAS M4 = MOTORSTOP

You have an option of either using USEPIN or ALIAS command to use
aliases in LADDER.

 369

Starting LADDER

CUBLOC executes BASIC first. You can set LADDER to start by using the
command “SET LADDER ON”. When this command is executed, LADDER is
executed constantly at a scan time of 10 milliseconds.

If you do not use SET LADDER ON command, Ladder Logic will not be
executed.

SET LADDER ON

Declare device to use

You must declare the device to be used. The following are examples of
how to use the CONST DEVICE command:

CONST DEVICE = CB220 ‘ Use CB220.

or
CONST DEVICE = CB280 ‘ Use CB280.

This command must be placed at the very start of the program.

 370

Using Ladder Only

You must at least do a device declaration, port declaration, and turn on the
LADDER for BASIC even if you are going to only use Ladder.

The following is an example of such minimal BASIC code:

Const Device = CB280 'Device Declaration

Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR

Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE

Set Ladder On 'Start Ladder

Do
Loop 'BASIC program will run in infinite loop/

 371

Enable Turbo Scan Time Mode

In order to use both BASIC and LADDER, a scan time of 10ms is supported
for LADDER. If you would like to enable Turbo Scan Time Mode when not
using BASIC, you can follow the example below.

The LADDERSCAN command can be used inside a DO…LOOP to enable
Turbo Scan Time Mode. Depending on the size of the Ladder program, this
scan time MAY change. For small programs less than 50 rungs, a scan time
of 500us to 1ms is possible.

Const Device = CB280 'Device Declaration
Usepin 0,In,START 'Port Declaration
Usepin 1,In,RESETKEY
Usepin 2,In,BKEY
Usepin 3,Out,MOTOR
Alias M0=RELAYSTATE 'Aliases
Alias M1=MAINSTATE
Do
 LadderScan
Loop

F16 is a special Register for checking the current scan time. You can
connect it to an I/O port as shown below and check it with an oscilloscope.

Below is an example of a conditional case where Turbo Scan Time is used.
Only when Register M0 is ON will the Turbo Scan Time be enabled.

 Do
 Set Ladder On ’10 ms Scan when M0 is OFF
 Do While _M(0) = 1
 LadderScan ‘Only Execute when M is ON
 Loop
 Loop

 372

Things to Remember in LADDER

Input symbol must be placed at the very left side of the Ladder Logic.

* Output symbol must be placed at the very right side of the Ladder Logic.

 373

Identical outputs must not collide.

You may not use more than one vertical line as shown below.

More than 1 division will give compile error

 374

Ladder Logic moves from top to bottom.

A Function Register can not be on the left side of the Ladder Logic.

When a Ladder Logic rung becomes complex, simply divide them so you can
see and understand them better as shown below.

 375

ladder instructions

Ladder low level instructions

Command Symbol Explanation
LOAD

Contact A (Normally Open)

LOADN

Contact B (Normally Closed)

OUT

Output

NOT

NOT (Inverse the result)

STEPSET

Step Controller Output (Step Set)

STEPOUT

Step Controller Output (Step Out)

MCS

Master Control Start

MCSCLR

Master Control Stop

DIFU

Set ON for 1 scan time when HIGH signal
received

DIFD

Set ON for 1 scan time when LOW signal
received

SETOUT

Maintain output to ON

RSTOUT

Maintain output to OFF

END

End of Ladder Logic

GOTO

Jump to specified label

LABEL

Label Declaration

CALLS

Call Subroutine

SBRT Declare subroutine
RET End Subroutine
TND conditional exit command

 376

High level instructions

Command Parameter Explanation
Data Transfer Commands
WMOV s,d Word Data Move
DWMOV s,d Double Word Data Move
WXCHG s,d Word Data Exchange
DWXCHG s,d Double Word Data Exchange
FMOV s,d,n Data fill command
GMOV s,d,n Group move command
Increment/Decrement Commands
WINC d Increment 1 to the Word
DWINC d Increment 1 to the Double Word
WDEC d Decrement 1 to the Word
DWDEC d Decrement 1 to the Double Word
Math Commands
WADD s1,s2,d Word Add
DWADD s1,s2,d Double Word Add
WSUB s1,s2,d Word Subtract
DWSUB s1,s2,d Double Word Subtract
WMUL s1,s2,d Word Multiplication
DWMUL s1,s2,d Double Word Multiplication
WDIV s1,s2,d Word Division
DWDIV s1,s2,d Double Word Division
Logical Operation Commands
WAND s1,s2,d Word AND
DWAND s1,s2,d Double Word AND
WOR s1,s2,d Word OR
DWOR s1,s2,d Double Word OR
WXOR s1,s2,d Word XOR
DWXOR s1,s2,d Double Word XOR
Bit Shift Commands
WROL d Word 1 bit Shift Left
DWROL d Double Word 1bit Shift Left
WROR d Word 1 bit Shift Right
DWROR d Double Word 1 bit Shift Right

 377

LOAD,LOADN,OUT

LOAD is for Normally Open Contacts and LOADN is for Normally Closed
Contacts.

LOAD

LOADN

OUT

Registers that
can be used

P M F S C T D Constants

LOAD
LOADN

O O O O O O

OUT O O

P0

P2

P1

P3

 378

NOT, AND,OR

NOT Symbol

AND

OR

NOT symbol inverses the results. If P0 is ON then P5 will be OFF.

AND is when two Registers are horizontally placed next to each other. Both
Registers P0 and P1 must be True(ON) in order for P5 to be True (ON).

For OR operation, two Registers are vertically placed next to each other.
When either P0 or P1 is ON, P5 will be ON.

The following is an example of BLOCK AND and BLOCK OR.

BLOCK AND

BLOCK OR

 379

SETOUT, RSTOUT

SETOUT will turn ON P5 when P0 turns ON, and will keep P5 ON even if P0
turns off.

On the other hand, RSTOUT will output OFF when P1 is ON, and will keep P5
off even when P1 turns OFF.

Registers that
can be used

P M F S C T D Constants

SETOUT O O O
RSTOUT O O O

P0

P1

P5

 380

DIFU, DIFD

This command DIFU turns ON the output 1 scan time when input goes from
OFF to ON.

Conversely, DIFD turns OFF the output 1 scan time when input goes from
ON to OFF.

DIFU

DIFD

P0

P1

P5

P6

1 SCAN

1 SCAN

 381

MCS, MCSCLR

The command MCS and MCSCLR allow the Ladder Logic between MCS X
and MCSCLR X to be executed when turned ON. If MCS is OFF, the Ladder
Logic between MCS X and MCSCLR X will not be executed.

By using this command, the user is able to control a whole block of Ladder
Logic.

MCS # (0~7)

In the above example, when M0 turns ON, Ladder Logic between MCS 0 and
MCSCLR is executed normally. If M0 is OFF, P5 and P6 will not be
processed.

MCS numbers can be assigned from 0 to 7. MCS numbers should be used
from 0 increasingly to 1, 2, 3, and so on. MCS 1 must exist inside MCS 0
and MCS 2 must exist inside MCS 0. When MCS 0 is OFF, all MCS inside
MCS 0 will turn OFF.

When MCS turns OFF, all outputs within that MCS block will turn OFF,
Timers will be reset, and Counters will be stopped.

Command When MCS is ON When MCS is OFF
OUT Normal Operation OFF
SETOUT Normal Operation Maintain status after MCS turned OFF
RSTOUT Normal Operation Maintain status after MCS turned OFF
Timer Normal Operation Reset to default value
Counter Normal Operation Maintain status after MCS turned OFF
Other
Commands

Normal Operation Stop Operation

 382

The following screenshot shows MCS used within another MCS.

*You may simply re use MCS 0 if no additional MCS needs to reside within
MCS.

 383

Step Control
S Registers are used for step control. The following is the correct format
for step control.

S7:126

Relay (0~15)

Step # (0~255)

In Step Control, there’s “normal step” and “reverse step”. For normal step,
we can simply use the STEPSET command.

STEPSET

This command STEPSET will turn ON the current step if the previous step
was ON. Since it operates in one step at a time, we call it STEPSET. For
example, in the above ladder diagram, when P1 turns ON, S0:2 is turned
ON if S0:1 is turned ON. Then S0:1 is turned OFF. When P2 turns ON,
S0:0 is turned ON and the other steps are turned off. S0:0, or step 0, is
used for reset. Otherwise STEPSET will move in order.

P0

P1

P2

S0:0

S0:1

S0:2

 384

STEPOUT

This command STEPOUT will allow only 1 step to be enabled at all times.
The last step to be turned ON will be the step to be enabled at any given
moment.

When P1 turns ON, S0:2 will turn ON. When P0 turns on S0:1 turns ON,
and S0:2 turns OFF. A step will be kept on until another step is turned ON.

P0

P1

P2

S0:0

S0:1

S0:2

 385

TON, TAON
When the input turns ON, the timer value is decremented and output turns
on when timer is done. There are two kinds of timers, one that works in
0.01 second units and another that works in .1 second units.

Type of Timer Time units Maximum Time
TON 0.01 sec 655.35 sec
TAON 0.1 sec 6553.5 sec

There are 2 parameters with commands TON, TAON. For the first
parameter, you can choose T0 through T99 and for the second parameter,
you may use a number or a data memory such as D0.

Usable
Registers

P M F S C T D Constants

TON, TAON O O O O

In the above LADDER diagram, when START turns ON, T0 Timer will run
from zero to 100. When 100 is reached, T0 will turn on. Here, 100 is
equal to 1 second for TON and 10 seconds for TAON.

START

T0

1sec

When START turns OFF, the timer is reset to the original set value of 100
and T0 turns off. TON, TAON commands will reset their timer values upon
powering OFF. To use the features of battery backup, you can use KTON,
KTAON which will maintain their values when powered OFF. Below is an
example of how to reset TAON.

 386

TOFF, TAOFF

When input turns ON, output turns ON immediately. When the input turns
OFF, the output is kept ON for the set amount of time. Like TON and TAON,
there are 2 commands for two different time units.

Type of Timer Time units Maximum Time
TOFF 0.01 sec 655.35 sec
TAOFF 0.1 sec 6553.5 sec

There are 2 parameters for the commands TOFF and TAOFF. For the first
parameter, you can choose T0 through T99. For the second parameter,
you may use a number or a data memory such as D0.

Usable
Registers

P M F S C T D Constants

TOFF, TAOFF O O O O

In the above LADDER diagram, when START turns ON, the T0 Timer will
immediately turn ON. After START turns OFF, the timer will start
decreasing from 100 to 0. When 0 is reached, T0 will turn OFF.

Here, 100 is equal to 1 second for TON and 10 seconds for TAOFF.

START

T0

1sec

 387

CTU

This command is an UP Counter. When an input is received the counter is
incremented by one. When the counter counts to a specified value, the set
Register will turn ON at that point. There is a Reset input so the counter
can be reset as needed.

PULSE

RESET

C0

100 pulse

CTD

This command is a DOWN Counter. When an input is received the counter
is decremented by one. When the counter reaches 0, the set Register will
turn ON at that point. There is a Reset input so the counter can be reset as
needed.

PULSE

RESET

C1

100 pulse

 388

UP/DOWN COUNTER

Below is a simple example of how an UP Counter can be used to make an
UP/DOWN Counter.

P0 is for counting UP, P2 is for counting DOWN, and P1 is for resetting the
COUNTER. When the Counter reaches 100, C0 turns ON.

P0

P2

P1

C0
COUNT

C0

 389

KCTU

This command is exactly same as the CTU command, except this command
will be able to remember counter values when the module is powered off.
The module used for this command MUST support battery backup
(CB290/CB405). In comparison, the CTU command will lose its count value
when the module is powered off.

P0

P1

C0

100 pulse

Power off & on
Use RESET to set the
counter to 0 at the
beginning

When using this command for the very first time, use the RESET signal to
reset the counter value. Otherwise the counter will start at the last updated
value (random if not set before).

KCTD
This command is exactly same as the CTD command, except this command
will be able to remember the counter value when the module is powered off.
The module used for this command MUST support battery backup
(CB290/CB405). In comparison, the CTD command will lose its count value
when the module is powered off.

KCTU and KCTD must be used with modules that support battery backup
such as the CB290, CB405, and CuTouch.

 390

Comparison Logic

Compare 2 Words(16 bit) or 2 Double Words(32 bit) values and turn on an
output when the conditions are satisfied.

Comparison
Command

Data Types Explanation

=, s1, s2 Word(16 bit) When s1 and s2 are same Output turns ON.
<>, s1, s2 Word(16 bit) When s1 and s2 are different, Output turns

ON.
>, s1, s2 Word(16 bit) When s1 > s2, Output turns ON.
<, s1, s2 Word(16 bit) When s1 < s2, Output turns ON.
>=, s1, s2 Word(16 bit) When s1 >= s2, Output turns ON.
<=, s1, s2 Word(16 bit) When s1 <= s2, Output turns ON.
D=, s1, s2 DWord(32 bit) When s1 and s2 are same Output turns ON.
D<>, s1, s2 DWord(32 bit) When s1 and s2 are different, Output turns

ON.
D>, s1, s2 DWord(32 bit) When s1 > s2, Output turns ON.
D<, s1, s2 DWord(32 bit) When s1 < s2, Output turns ON.
D>=, s1, s2 DWord(32 bit) When s1 >= s2, Output turns ON.
D<=, s1, s2 DWord(32 bit) When s1 <= s2, Output turns ON.

You can mix different comparisons as shown below:

When either D0=T1 or D1<100 and if C0>=99, M0 will turn ON. In other
words, either D0 has to equal to value of T1 or D1 has to be less than 100
while C0 must be larger or equal to 99.

 391

Storing Words and Double Words

A Byte is 8 bits, a Word is 16 bits, and a Double Word is 32 bits.

1 BYTE

1 WORD

DOUBLE WORD

There are 2 ways to store Word or Double Word data. A Word or Double
Word can be stored starting from the LOW BYTE or from the HIGH BYTE.
In CUBLOC, it is stored from the LOW BYTE or LSB (Least Significant Byte).

As you can see below, 1234H is
stored in Memory Address 0 and
12345678H is stored in Memory
Address 5. In every Memory
Address, 1 byte of data is stored.

0
1
2
3
4
5
6
7
8
9

78
56
34
12

34
12

The Registers C, T, D are in units of Words. To store Double Word data, 2
Word spaces will be required, meaning two Register spaces. Below is an
example of storing a Double Word, 12345678H. D1 gets 1234H and D0
gets 5678H.

D0
D1
D2
D3
D4

5678
1234

 392

Binary, Decimal, Hexadecimal

To program well, we need to know binary, decimal, and hexadecimal
numbers. The following chart shows the relationships between these three
types of number representation.

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

In CUBLOC’s Ladder Logic, we express binary and hexadecimal numbers in
the following manner:

Binary: 00101010B
Hexadecimal: 0ABCDH

We put a B at the end of the binary number and an H for hexadecimal
numbers. To clearly identify that ABCD is a number, we can put a 0 in
front of the hexadecimal number.
 (E.g. : 0ABH, 0A1H, 0BCDH)

*BASIC is slightly different from LADDER in the way you express binary and
hexadecimal numbers. We use &B100010 or &HAB to express those type
of numbers.

 393

WMOV, DWMOV
WMOV s, d
DWMOV s, d

The command WMOV moves 16 bit data from s to d. DWMOV can be used
for 32 bit data.

Usable Register P M F S C T D Constants
s (Source) O O O O
d (Destination) O O O

When the input START turns ON, D0 will get 100. When IN0 turns ON, D2
will get 1234H.

D0 100
D1
D2 1234H
D3 0
D4

 394

WXCHG, DWXCHG
WXCHG s, d
DWXCHG s, d

The command WXCHG exchanges data between s and d. WXCHG is for
exchanging 1 Word and DWXCHG is for exchanging Double Word.

Usable
Registers

P M F S C T D Constants

s O O O
d O O O

When START turns ON, D0 gets 100 and D1 gets 123. When IN0 turns ON,
D0 and D1 exchange their data. The result is as shown below:

D0 123
D1 100
D2
D3
D4

 395

FMOV
FMOV s, d, n

Store value in s to d, and n number of times after that to additional
locations. This command is usually used for initializing or clearing memory.

Usable
Registers

P M F S C T D Constants

s O O O
d O O O
n O

Below is result of LADDER execution:

D0 100
D1 100
D2 100
D3 100
D4 100
D5 100

*Notice: Please Set n less than 255.

 396

GMOV
GMOV s, d, n

Store value starting at s to d by n memory locations. Please make sure not
to overlap memory locations as this could cause data collisions.

Usable
Registers

P M F S C T D Constants

S O O O
D O O O
N O

Below is result of LADDER execution:

D0 12
D1 34
D2 56
D3 78
D4 90
D5
D6
D7
D8
D9

D10 12
D11 34
D12 56
D13 78
D14 90
D15
D16

*Notice: Please Set n less than 255.

 397

WINC, DWINC, WDEC, DWDEC
WINC d
DWINC d
WDEC d
DWDEC d

WINC increments Word value in d by one.
DWINC increments Double Word value in d by one.
WDEC decrements Word value in d by one.
DWDEC decrements Double Word value in d by one.

Usable
Registers

P M F S C T D Constants

d O O O

Below is result of LADDER execution:

D0 99
D1
D2
D3

 398

WADD, DWADD
WADD s1, s2, d
DWADD s1, s2, d

Add s1 and s2 and store the result in d.
WADD is for Word values and DWADD is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

WSUB, DWSUB
WSUB s1, s2, d
DWSUB s1, s2, d

Subtract s2 from s1 and store the result in d.
WSUB is for Word values and DWSUB is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

D1 gets 95 in the above LADDER diagram.

 399

WMUL, DWMUL
WMUL s1, s2, d
DWMUL s1, s2, d

Multiply s1 and s2 and store result in d.
WMUL is for Word values and DWMUL is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

The result of 1234H * 1234H is stored in D1 as a double word of 14B5A90H.

D0 1234H
D1 5A90H
D2 14BH

The result of 123456H * 1234H is stored as 4B60AD78H in D2

D0 3456H
D1 0012H
D2 0AD78H
D3 4B60H
D4 0
D5 0

 400

WDIV, DWDIV
WDIV s1, s2, d
DWDIV s1, s2, d

Divide s1 by s2 and store the result in d and leftover in d+1.
WDIV is for Word values and DWDIV is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

D0 1234H
D1
D2 3
D3
D4 611H
D5 1

D0 5678H
D1 1234H
D2 7
D3 0
D4 0C335H
D5 299H
D6 5
D7 0

 401

WOR, DWOR
WOR s1, s2, d
DWOR s1, s2, d

Do Logical operation OR on s1 and S2 and store result in d.
WOR is for Word values and DWOR is for Double Word Values.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

The result of above ladder diagram:

D0 1200H
D1 34H
D2 1234H

 402

WXOR, DWXOR
WXOR s1, s2, d
DWXOR s1, s2, d

Store result of s1 XOR s.
WXOR is for logical operation XOR in WORD units whereas DWXOR is for
DOUBLE WORD units.

Usable
Registers

P M F S C T D Constants

s1 O O O O
s2 O O O O
d O O O

The following is result of above LADDER:

D0 1234H
D1 0FFH
D2 12CBH

When you want to invert specific bits, you can use XOR logical operation.

 403

WAND, DWAND
WAND s1, s2, d
DWAND s1, s2, d

Store result of s1 AND s2. WAND is for logical operation AND in WORD
units whereas DWAND is for DOUBLE WORD units.

Registers that
may be used

P M F S C T D Constants

s1 O O O O
s2 O O O O
D O O O

The results of execution of LADDER above:

D0 1234H
D1 0FFH
D2 34H

You can use AND operation when you want to use specific bits only.

 404

WROL, DWROL
WROL d
DWROL d

Rotate the value in Register d 1 (double) word to the left. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL
moves double word.

Registers that
may be used

P M F S C T D Constants

D O O O

If D0 has 8421H, the following results:

D0 0843H
D1

 405

WROR, DWROR
WROR d
DWROR d

Rotate the value in Register d 1 (double) word to the right. The value left
gets stored in the Carry flag. WROL moves one word whereas DWROL
moves double word.

Registers that
may be used

P M F S C T D Constants

d O O O

If D1 has 8421H, the following results:

D0
D1 0C210H

 406

GOTO, LABEL
GOTO label
LABEL label

The command GOTO will jump to the specified label.

When START turns ON, the LADDER program will jump to label SK_1

In the below example LADDER diagram, when D0 equals C0, the program
will jump to SK_1.

 407

CALLS, SBRT, RET
CALLS label
SBRT label

CALLS will call a sub-routine.
SBRT is the starting point for a sub-routine.
RET is the ending point for a sub-routine.

End of Ladder

End of sub-routine

Start of sub-routine

RET must be used when

there are sub-routines

Main Program

Please be aware that when adding sub-routines to your program, you need
to add RET to the end of main program to differentiate from sub-routines.
END goes at the very end of main program and sub-routines in this case.

 408

INTON
INTON s,d

INTON is same as WMOV command except it triggers an interrupt to a
section of BASIC.

Usually
Registers

P M F S C T D Constants

s (Source) O O O O
d (Destination) O O O

 409

TND

TND is a conditional exit command. When the user wants to abort Ladder
scanning during operation, TND can be used.

When P0 turns ON in the above program, Ladderscan will abort.

You can also use it for exiting from sub-routines when a certain condition is
met. In the above example, when P1 turns ON, the subroutine will be
aborted, but Ladder scanning will keep executing.

 410

Special Registers

You can use special Registers to find out about the current status of
CUBLOC or use them for timing functions and applications.

Special
Register

Explanation

F0 Always OFF
F1 Always ON
F2 Turn on 1 SCAN time at POWER UP (Set Ladder On).
F3
F4
F5
F6
F7
F8 1 SCAN On every 10ms
F9 1 SCAN On every 100ms
F10
F11
F12
F13
F14
F15
F16 Repeat ON/OFF every 1 Scan time.
F17 Repeat ON/OFF every 2 Scan times.
F18 Repeat ON/OFF every 4 Scan times.
F19 Repeat ON/OFF every 8 Scan times.
F20 Repeat ON/OFF every 16 Scan times.
F21 Repeat ON/OFF every 32 Scan times.
F22 Repeat ON/OFF every 64 Scan times.
F23 Repeat ON/OFF every 128 Scan times.
F24 Repeat ON/OFF every 10ms
F25 Repeat ON/OFF every 20ms
F26 Repeat ON/OFF every 40ms
F27 Repeat ON/OFF every 80ms
F28 Repeat ON/OFF every 160ms
F29 Repeat ON/OFF every 320ms
F30 Repeat ON/OFF every 640ms
F31 Repeat ON/OFF every 1.28 seconds
F32 Repeat ON/OFF every 5.12 seconds
F33 Repeat ON/OFF every 10.24 seconds
F34 Repeat ON/OFF every 20.48 seconds
F35 Repeat ON/OFF every 40.96 seconds
F36 Repeat ON/OFF every 81.92 seconds
F37 Repeat ON/OFF every 163.84 seconds
F38 Repeat ON/OFF every 327.68 seconds
F39 Repeat ON/OFF every 655.36 seconds
F40 Call LADDERINT in BASIC
F41
F42

 411

* If you write 1 to F40, you can create a LADDERINT in BASIC. Please
refer to ON LADDERINT GOSUB command for details.

* F2 causes 1 Scan ON at the time of BASIC’s SET LADDER ON command.

*Blank special Registers are reserved. Please do not use them.

 412

MEMO

 413

Integrated Touch Screen Controller

CUTOUCH

User Manual

“Everything for Embedded Control”

Comfile Technology Inc.
www.comfiletech.com

 414

Preface

The CUTOUCH is a fully integrated graphical touchscreen device containing
a CUBLOC embedded computer. In recent years, touchscreens have found
increasing use in the field of industrial automation. However, most
touchscreen devices require connection to an external PLC, and require
learning yet another complex interface description method. In addition,
cost of touchscreen interfaces has remained relatively high.

The CUTOUCH is a complete touchscreen controller which can handle
graphical interface and direct I/O at the same time. This reduces
complexity and cost in your machine designs.

The embedded BASIC language can be used to draw graphics and print
characters to the LCD, and process touchscreen coordinates. BASIC makes
it easy to interface to various types of sensors, read analog values, process
text and math, and perform custom RS232 communication; tasks that are
difficult to accomplish with a traditional PLC. Ladder Logic is still available
and runs alongside the BASIC program, allowing the user to perform
sequential processing and real-time logic as in traditional PLCs.

The CUTOUCH has reprogrammable flash memory for the BASIC and
LADDER programs. An RS232 serial port is used to download and debug
code using a Windows PC. The CUTOUCH will operate as a stand-alone
device when detached from the PC serial port.

If you are thinking about developing a device that uses a touchscreen,
please review the CUTOUCH. The integrated approach saves time and lets
you concentrate on solutions instead of problems.

Comfile Technology Inc.

 415

What is CUTOUCH?

The CUTOUCH is different from traditional touchscreens you may have
encountered. Traditional touchscreens are not a complete integrated
solution to your application. They are usually touchscreen panels that will
only display graphics and capture touch input. In other words, most
touchscreens require an external controller in order to affect the real world
through I/O.

The CUTOUCH combines a traditional PLC with a touchscreen graphic LCD.
By integrating user input, display output, and control, developers can now
use one device as a complete control system.

TOUCH PANEL + PLC

CUTOUCH

 416

CUTOUCH Specifications

Processor CUTOUCH CT1720 CUTOUCH CT1721
Microprocessor Dual Core Atmega128 @ 18.432Mhz Dual Core Atmega128 @ 18.432Mhz

Program
Memory (Flash)

80KB 80KB

Data
Memory (RAM)

24KB(BASIC)+4KB(Ladder Logic) 24KB(BASIC)+4KB(Ladder Logic)

EEPROM 4KB EEPROM 4KB EEPROM

Program Speed 36,000/sec 36,000/sec

General Purpose
I/O

- 82 I/O lines (ALL 5V TTL) (33 input
only + 32 output only + 17
input/output configurable)

- 82 I/O lines (TTL & 24V DC) (1 TTL
input, 32 24V opto-isolated inputs +
32 24V TR outputs + 17 TTL
input/output configurable)

- 2 High-speed hardware-independent
serial ports (Channel 0 & 1 : RS232C
12V)

- 2 High-speed hardware-independent
serial ports (Channel 0 & 1 : RS232C
12V)

Serial Ports for
Communication

- Configurable Baud rates: 2400bps to
230,400 bps

- Configurable Baud rates: 2400bps to
230,400 bps

Analog Inputs 8 channel 10-bit ADCs
Input Voltage Range: 0 to 5V

8 channel 10-bit ADCs
Configurable Voltage: 0 to 5V OR 0 to

10V

Analog Outputs

- 6 Channel 16-bit PWMs (DACs)
- Output Voltage Range: 0 to 5V
- Configurable Frequency: 35hz to
1.5Mhz

- 6 Channel 16-bit PWMs (DACs)
- Output Voltage Range: 0 to 5V
- Configurable Frequencies: 35hz to
1.5Mhz

External Interrupts 4 Channels 4 Channels

High Speed
Counters

2 Channel 16-bit Counters (up to
2Mhz)

2 Channel 16-bit Counters (up to
2Mhz)

Power

- Required Power: 9-24V DC
- Current Consumption w/ ports
unloaded:
@ 24V w/ Backlight ON: 170mA
@ 24V w/ Backlight OFF: 70mA
@ 12V w/ Backlight ON: 340mA
12V w/ Backlight OFF: 130mA

- Required Power: 24V DC
- Current Consumption w/ ports
unloaded:
@ 24V w/ Backlight ON: 170mA
@ 24V w/ Backlight OFF: 70mA
@ 12V w/ Backlight ON: 340mA
12V w/ Backlight OFF: 130mA

RTC (Real Time
Clock)

Yes Yes

- 1 User Configurable Timer - 1 User Configurable Timer
 Timers
- Configurable Interval Units = 10ms - Configurable Interval Units = 10ms

Data Memory Back-
up

*Yes, a 1 Farad rechargeable Super-
Capacitor is included.

*Yes, a 1 Farad rechargeable Super-
Capacitor is included.

Operating
Temperature

0 °C to 70 °C 0 °C to 70 °C

Package
Integrated Touch-screen Panel w/

2mm Headers and
2.5mm RCABLE Headers

Integrated Touch-screen Panel w/
2mm Headers and

2.5mm RCABLE Headers

Size

- 7.17" x 5.17" x 0.98"
- (182.2 x 131.4 x 25 mm)
- Viewing Area (Touch-sensitive):
4.5" x 3.4" (5.6" diagonal)

- 7.17" x 5.17" x 0.98"
- (182.2 x 131.4 x 25 mm)
- Viewing Area (Touch-sensitive):
4.5" x 3.4" (5.6" diagonal)

 417

Hardware Requirements

The Cubloc Studio software used to develop for the CUTOUCH will run on a
computer with Windows XP, 2000, or 98 installed. If you would like to use
it in Linux/Unix/Macintosh environment, you will need to install virtual
machine software of some type (such as VMware) that will allow the
Windows operating system to run on it.

An RS232 port is also required, or you may use a USB-to-RS232C
converter. Download and Monitoring is possible when connected to a PC.

When the CUTOUCH is disconnected from a PC, it is in a stand-alone mode.
The main program is stored in the CUTOUCH’s flash memory, and will be
retained even with no power. The user may download new programs and
erase them 10,000 or more times per device.

(Above: Picture of CUTOUCH ready for programming)

 418

Software
Development Environment

The CUTOUCH uses Cubloc Studio as its main development environment.
For graphics, we provide automatic code generating GUI (Graphic User
Interface) software: CuCANVAS and PixelStudio.

Cubloc Studio is used for BASIC and Ladder Logic programming on
the CUTOUCH.

CuCANVAS is mainly used for creating boxes, circles, and menu
buttons while PixelStudio allows the user to create up to 200 custom
characters.

All development software can be downloaded on our website under
Download.

 419

CUTOUCH I/O Ports

Model Name CT1720
Input Only 33
Output Only 32
A/D Input (or I/O) 8
High Counter Input (or I/O) 2
Other I/Os 8
Total 82

CT1720
The 82 I/O ports on the CT1720 can be accessed using the connectors
shown here:

GND

J12J13J14

J4 J3

J2 J1

GNDG
N

D
CN

T1
CN

T0

715 614 513 412 311 210 19 08

P
39

P
38

P
37

P
36

P
35

P
34

P
33

P
32

P
31

P
30

P
29

P
28

P
27

P
26

P
25

P
24

P
71

P
70

P
69

P
68

P
67

P
66

P
65

P
64

P
63

P
62

P
61

P
60

P
59

P
58

P
57

P
56

V
ss

V
ss

N
/C

N
/C

V
ss

V
ss

N
/C

N
/C

C
nt

1
C

nt
0

P
15

P
14

P
13

P
12 P
11

P
10 P

9
P

8

V
ss

V
ss

V
ss

V
ss

V
ss

N
/C

N
/C

V
dd

V
dd

V
dd

V
ss

V
ss

V
ss

V
ss

V
ss

N
/C

N
/C

V
dd

V
dd

V
ddV
dd

V
dd

N
/C

N
/C

24
V

24
V

24
V

N
/C

V
ss

V
dd

P
7

P
6

P
5

P
4

P
3

P
2

P
2

P
0

P
55

P
54

P
53

P
52

P
51

P
50

P
49

P
48

P
47

P
46

P
45

P
44

P
43

P
42

P
41

P
40

P
87

P
86

P
85

P
84

P
83

P
82

P
81

P
80

P
79

P
78

P
77

P
76

P
75

P
74

P
73

P
72

J2

J4 J3

J1

*J1, J2, J3, J4 are 2mm pitch. A PCB board is recommended for TTL access.
J12, J13, J14 are 2.5mm pitch RCABLE headers. Comfile RCABLE
connectors can be used.

 420

Connector Name I/O Port Block Explanation

P0 I/O ADC0
P1 I/O ADC1
P2 I/O ADC2
P3 I/O ADC3
P4 I/O ADC4
P5 I/O ADC5
P6 I/O ADC6

J12
(J3)

P7 I/O

Block 0

ADC7
P8 I/O PWM0
P9 I/O PWM1
P10 I/O PWM2
P11 I/O PWM3
P12 I/O PWM4 / INT0
P13 I/O PWM5 / INT1
P14 I/O INT2

J13
(J3)

P15 I/O

Block 1

INT3
P16 I/O HIGH COUNT INPUT 0 J14
P17 IN HIGH COUNT INPUT 1

 P18 OUTPUT Internally connected to Piezo
BUZZER
(Cannot be accessed from Ladder)

 P19 to
P23

 N/C

P24 to 31 OUTPUT Block 3 8 Output Ports
P32 to 39 OUTPUT Block 4 8 Output Ports
P40 to 47 OUTPUT Block 5 8 Output Ports

J2

P48 to 55 OUTPUT Block 6 8 Output Ports
P56 to 63 INPUT Block 7 8 Input Ports
P64 to 71 INPUT Block 8 8 Input Ports
P72 to 79 INPUT Block 9 8 Input Ports

J4

P80 to 87 INPUT Block 10 8 Input Ports

N/C = No Connection

The CUTOUCH CT1720 I/O Ports are TTL 5V.

The CUTOUCH Add-On Board allows opto-isolated 24V DC inputs and 24V
TR outputs for J1 to J4.

The CUTOUCH CT1721 is a combination of CT1720 and the Add-On Board.

*Please be careful to not input more than 5V into a CUTOUCH TTL ports as
it can damage the product.

 421

There are extra RS232 headers as shown below:

Download
cable

RS232
Channel 1

RS232
Addtional
Connector

The Download RS232 Channel is a 4-pin type connector and RS232 Channel
1 is a 3 pin type connector as shown below. You can connect them to the
PC SIDE RS232 Pins as shown below:

GND
DTR

TD
RD

GND
TD
RD

RD

Download / Monitoring

RS232 Channel 1

TD

DTR

GND

PC SIDE

1

2

3

4

5

6

7

8

9

 422

Backup Battery

The CUTOUCH will maintain data in its volatile memory after power OFF by
using a backup battery. If backup is not needed, the program must clear
the memory at the beginning of the program. Use RAMCLEAR at the
beginning of your BASIC code section to clear all data memory at the start
of the program.

*The CUTOUCH comes with a self-charging 1.0F super-capacitor which can
last about a day (up to 30hrs). You can replace it with a 10.0F super-
capacitor to extend the duration to about 300 hours(12.5 days). Adding a
battery can provide additional backup time depending on capacity. To add
a backup battery, please connect to the pads labeled “External Battery,”
under the super-capacitor (not visible when back cover is in place).

 '
 ' DEMO FOR CUTOUCH
 '
 Const Device = CT1720
 Dim TX1 As Word, TY1 As Word
 TX1 = 0
 TY1 = 0 ‘ Clear just this variable
 RAMCLEAR ‘ Clear all RAM

In LADDER, all registers S, M, C, T, and D are maintained by the backup
battery. Register P is cleared at power ON by default. If you only want to
clear parts of a Register, not all Registers, you can use the following method
to clear:

 Const Device = CT1720
 Dim I As Integer
 For I=0 to 32 ‘ Clear only Register M0 to M32
 _M(I) = 0
 Next
 Set Ladder On

Most traditional PLCs have KEEP memory for storing data in case of power
down. CUTOUCH also has this feature using a super capacitor, which
recharges itself and acts as a backup battery. You also have the option of
using larger capacitor or an actual battery.

 423

KEEP Timer and KEEP Counter

The KEEP timer will retain its data values when powered off, and continue
from those data values when power is turned on. KCTU and KCTD
commands can be used in place of CTU and CTD commands in order to
make use of the KEEP timer and KEEP counter. Please refer to KCTU, KCTD
commands for detailed information.

 424

Menu System Library

The CUTOUCH supports extra commands for easy-to-use menus. These
commands allow easy creation and manipulation of the menus. With the
menu system library, a menu system as shown below can be made in less
than 5 minutes.

Select gas Gas pressure Auto type

Gas left Initialize Total cost

Comfile Automobile gas pressurizer

MENU Commands
The CUTOUCH has memory space for about 100 MENU buttons. Use the
MENUSET command to set the x and y axis position, as well as the style of
the MENU. Then the MENUTITLE command can be used to name the MENU.
When a touch input is received, the MENUCHECK command can be used to
decide which MENU button was pressed.

0 99

Each MENU button can be reset to another x and y axis position and style
by using the MENUSET command. The only restriction is that up to 100
buttons can be present on one screen. The user is free to reset each button
to another usage for each screen, resulting in virtually unlimited button and
menu capabilities.

 425

Menuset
MENUSET index, style, x1, y1, x2, y2
 Index : Menu Index Number
 Style : Button Style; 0=none, 1=Box, 2=Box with Shadow
 X1,y1,x2,y2 : Menu Button location

The Index value must be between 0 to 99. Style is the shape of the button,
where 0 is for no box, 1 is for a box, and 2 is for a shadowed box.

0 1 2

x1, y1, x2, y2 are the x and y axis positions of the left upper and lower
right corners. When this command is executed, the set part of the screen
becomes part of the button’s area.

Menutitle
MENUTITLE index, x, y, string

Index :Menu index number
X,y : Title location based on left upper corner of button
string : Name of the menu

Menuset only draws the box itself. Use the Menutitle command to set the
name of the menu like shown here:

 Menutitle 0,13,13,”Gas Left”
 Menutitle 1,16,13,”Initialize”
 Menutitle 2,13,13,”Total Cost”

Gas left Initialize Total cost

 426

Menucheck()
Variable = MENUCHECK(index, TouchX, TouchX)
 Variable : Variable to store results (1 if selected, 0 if unselected)
 Index : Menu Index Number
 TouchX : Touch pad x axis point
 TouchY : Touch pad y axis point

Use this command to determine which menu button has been pressed.
TouchX and TouchY are the user’s touchpad input points. If the Menu is
selected, 1 is returned, otherwise 0 is returned.

If Menucheck(0,TX1,TY1) = 1 Then
 Menureverse 0
 Beep 18,180
End If

Menureverse
MENUREVERSE index
 Index : Menu index number

The specified menu box is inverted. This is useful to provide visual
feedback to a user, indicating that a menu button has been pressed.

Initialize Total cost

Menu()
Variable = MENU(index, pos)
 Variable : Variable to store results (1 = selected, 0 = unselected)
 Index : Menu Index
 pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

If you need to find the current coordinates of Menu buttons set by the
Menuset command, you can use Menu() function to return the current
status of the specified menu. 0 will read x2, 1 will read y1, 2 will read x2,
and 3 will read y2.

If Menu(0,1) < 100 THEN ‘ If Menu button 0’ s Y1 is less than 100

 427

Waitdraw
WAITDRAW

This command will wait for a drawing command to finish before resuming
execution.

ELFILL 200,100,100,50 ‘ Fill an ellipse
WAITDRAW ‘ Wait until drawing is finished.

This command is especially useful for animations, and if you have trouble
displaying graphics at a high update rate.

The CUTOUCH has an internal buffer for receiving graphic commands from
the internal CUBLOC controller. If this buffer fills up and data is sent to it,
the existing data could get corrupted. In order to avoid these situations,
you can use the WAITDRAW command to wait until the buffer has enough
space before sending graphic commands.

If you need to draw graphics repeatedly, we recommend you use
WAITDRAW to prevent overrunning the buffer, which may appear as noise
on the LCD.

This command can only be used with CUTOUCH.

 428

Touch Pad Input Example
You can use SET PAD, ON PAD, and GETPAD commands to find out which
menus were touched by the user.

All PAD commands are used for receiving and processing touch input.

We can use ON PAD interrupts to receive touch inputs. The following is an
example program that uses the touch pad:

 '
 ' DEMO FOR CUTOUCH
 '
 Const Device = CT1720
 Dim TX1 As Integer, TY1 As Integer
 Set Pad 0,4,5 ‘Å (1) Activate Touch PAD Input
 On Pad Gosub abc ‘Å (2) Declare pad interrupts
 Do
 Loop
abc:
 TX1 = Getpad(2) ‘Å (3) Interrupt Service routine
 TY1 = Getpad(2)
 Circlefill TX1,TY1,10 ‘Å (4) Draw a circle where it
 ‘ was touched
Return

(1) SET PAD 0, 4, 5 : This command will activate the PAD inputs. (Syntax:
SET PAD mode, packet size, buffer size). The CUTOUCH has a separate
touch controller that will sense touch input and send it back to the CPU
through the SPI protocol. This touch controller will create a PAD signal that
is equal to mode = 0 (MSB, RISING EDGE sampling). Input packets are 4
bytes each (X and Y each get 2 bytes). Buffer size is 5, one more than the
actual packet size.

(2) ON Pad Gosub ABC: This command is for PAD interrupt declaration.
When PAD input occurs, it will jump to label ABC.

(3) This is the interrupt service routine. When a PAD input occurs, this part
of the code will be executed, until Return. Getpad will read the data
received from touch pad, 2 bytes for x position and 2 bytes for y position.

(4) Draw a circle where touch input was received.
When this program is executed, wherever you press on the screen a circle
will appear. Please use this program as a skeleton for your touch programs.
The following is a MENU command and ON PAD command example: When

 429

a button is pressed, a beep will sound and the button will be inversed.

 '
 ' DEMO FOR CUTOUCH
 '
 Const Device = CT1720
 Dim TX1 As Integer, TY1 As Integer
 Dim k As Long
 Contrast 550
 Set Pad 0,4,5
 On Pad Gosub abc
 Menuset 0,2,8,16,87,63
 Menutitle 0,13,13,"Start"
 Menuset 1,2,96,16,176,63
 Menutitle 1,13,13,"End"
 Menuset 2,2,184,16,264,63
 Menutitle 2,13,13,"Restart"
 Low 18
 Do
 Loop
abc:
 TX1 = Getpad(2)
 TY1 = Getpad(2)
 Circlefill TX1,TY1,10
 If Menucheck(0,TX1,TY1) = 1 Then
 Menureverse 0
 Pulsout 18,300 ‘ Send out beep to piezo
 End If
 If Menucheck(1,TX1,TY1) = 1 Then
 Menureverse 1
 Pulsout 18,300
 End If
 If Menucheck(2,TX1,TY1) = 1 Then
 Menureverse 2
 Pulsout 18,300
 End If
 Return

Start End Restart

 430

CUTOUCH Sample Programs

SAMPLE 1
Let’s make a simple counter that will print to the screen. The source files
used here are in your CUBLOC Studio installation directory. (Usually
C:\Program Files\Comfile Tools\CublocStudio)

<Filename : CT001.CUL>
 Const Device = Ct1720
 Dim I As Integer
 Contrast 550 ' LCD CONTRAST SETTING

 Do
 Locate 15,6
 Print DEC5 I
 Incr I
 Delay 200
 Loop

Please adjust your screen’s contrast accordingly using CONTRAST command.

* Depending on the model, you may be able to adjust the contrast using an
adjustable knob on the back of CUTOUCH. In this case, you have the
option to set the contrast manually.

 431

SAMPLE 2
The following example program will display a RESET button and will
increment the number shown every time the button is pressed.

<Filename : CT002.CUL>
 Const Device = Ct1720
 Dim I As Integer
 Dim TX1 As Integer, TY1 As Integer
 Contrast 550
 Set Pad 0,4,5
 On Pad Gosub GETTOUCH
 Menuset 0,2,120,155,195,200
 Menutitle 0,20,14,"RESET"

 Do
 Locate 15,6
 Print DEC5 I
 Incr I
 Delay 200
 Loop

GETTOUCH:
 TX1 = Getpad(2)
 TY1 = Getpad(2)
 If Menucheck(0,TX1,TY1) = 1 Then
 Pulsout 18,300
 I = 0
 End If
 Return

The SET PAD command activates touch input. The ON PAD command
jumps to a label when touch input is received. The MENUSET command
sets the desired touch input area and the MENUTITLE command sets the
name of the button itself. PULSEOUT outputs a BEEP sound to the piezo.

 432

SAMPLE 3

Draw a circle where your finger touches.

<Filename : CT003.CUL>
 Const Device = Ct1720
 Dim TX1 As Integer, TY1 As Integer
 Contrast 550
 Set Pad 0,4,5
 On Pad Gosub GETTOUCH
 Do
 Loop

GETTOUCH:
 TX1 = Getpad(2)
 TY1 = Getpad(2)
 Circlefill TX1,TY1,10
 Pulsout 18,300
 Return

 433

SAMPLE 4

Make a virtual keypad and accept numerical values.

1
1234 4

7

0

2

5

8

ENTER

3

6

9

<Filename : CT004.CUL>

 Const Device = Ct1720
 Dim TX1 As Integer, TY1 As Integer
 Dim I As Integer
 Contrast 550
 Set Pad 0,4,5
 On Pad Gosub GETTOUCH
 Menuset 0,2,165,50,195,75
 Menutitle 0,11,4,"1"
 Menuset 1,2,205,50,235,75
 Menutitle 1,11,4,"2"
 Menuset 2,2,245,50,275,75
 Menutitle 2,11,4,"3"
 Menuset 3,2,165,85,195,110
 Menutitle 3,11,4,"4"
 Menuset 4,2,205,85,235,110
 Menutitle 4,11,4,"5"
 Menuset 5,2,245,85,275,110
 Menutitle 5,11,4,"6"
 Menuset 6,2,165,120,195,145
 Menutitle 6,11,4,"7"
 Menuset 7,2,205,120,235,145
 Menutitle 7,11,4,"8"
 Menuset 8,2,245,120,275,145
 Menutitle 8,11,4,"9"
 Menuset 9,2,165,155,195,180
 Menutitle 9,11,4,"0"
 Menuset 10,2,205,155,275,180
 Menutitle 10,17,4,"ENTER"
 I =0
 Do
 Loop
GETTOUCH:

 434

 TX1 = Getpad(2)
 TY1 = Getpad(2)
 If Menucheck(0,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 1
 Pulsout 18,300
 Elseif Menucheck(1,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 2
 Pulsout 18,300
 Elseif Menucheck(2,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 3
 Pulsout 18,300
 Elseif Menucheck(3,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 4
 Pulsout 18,300
 Elseif Menucheck(4,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 5
 Pulsout 18,300
 Elseif Menucheck(5,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 6
 Pulsout 18,300
 Elseif Menucheck(6,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 7
 Pulsout 18,300
 Elseif Menucheck(7,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 8
 Pulsout 18,300
 Elseif Menucheck(8,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 9
 Pulsout 18,300
 Elseif Menucheck(9,TX1,TY1) = 1 Then
 I = I << 4
 Pulsout 18,300
 Elseif Menucheck(10,TX1,TY1) = 1 Then
 I = 0
 Pulsout 18,300
 End If
 Locate 3,3
 Print HEX4 I
 Return

The final value “I” is stored as BCD code; you can use the BCD2BIN
command to convert back to a binary number.

 435

SAMPLE 5

Let’s try using CuCANVAS to make some menus. To create the virtual
keypad shown in the previous page, it would take a long time to manually
code it and place buttons. We can save time by using CuCANVAS.

Run CuCANVAS and press the Add Form button on the upper right hand
corner. Enter a desired name for your new form (Here we used NUMKEY).

On the left side of CuCANVAS, you will see a toolbar with an arrow, box,
filled box, circle, filled circle, line, text, and menu box. Please select the
last button, menu box, and draw a small box on the screen.

The 0 on the button means the menu number is 0. In the actual screen,
this number will not be displayed. Please type “1” in the Title field on the
top. You have successfully made a “1” button.

 436

You can quickly make the rest of the buttons, and a keypad like the one
shown below can be created in less than 5 minutes.

 437

Now is the fun part. Simply click on Generate on the menu bar, and click
“View Basic Code.” CuCANVAS will generate a Sub function that includes
the buttons you have just created. Simply copy (Ctrl+C) and paste
(CTRL+V) to CUBLOC Studio. You have created a complete menu in
minutes. The “To Clipboard” button will also copy the contents of the code
generation window to the clipboard.

You can also use include files, instead of copying and pasting for repetitive
menu creations: Click “Save to File” button and save as an include (*.inc)
file.

 438

Include files make it easy to change the interface of your program without a
lot of cut and paste operations within your main code.

The following program is exactly same as SAMPLE4 except we use an
include file for the virtual keypad:

<Filename : CT005.CUL>
 Const Device = Ct1720
 Dim TX1 As Integer, TY1 As Integer
 Dim I As Integer
 Contrast 550
 Set Pad 0,4,5
 On Pad Gosub GETTOUCH
 NUMKEY ‘ Execute the Sub-routine in INCLUDE file
 I =0
 Do
 Loop

GETTOUCH:
 TX1 = Getpad(2)
 TY1 = Getpad(2)
 If Menucheck(0,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 1
 Pulsout 18,300
 Elseif Menucheck(1,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 2
 Pulsout 18,300
 Elseif Menucheck(2,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 3
 Pulsout 18,300
 Elseif Menucheck(3,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 4
 Pulsout 18,300
 Elseif Menucheck(4,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 5
 Pulsout 18,300
 Elseif Menucheck(5,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 6
 Pulsout 18,300
 Elseif Menucheck(6,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 7
 Pulsout 18,300
 Elseif Menucheck(7,TX1,TY1) = 1 Then

 439

 I = I << 4
 I = I + 8
 Pulsout 18,300
 Elseif Menucheck(8,TX1,TY1) = 1 Then
 I = I << 4
 I = I + 9
 Pulsout 18,300
 Elseif Menucheck(9,TX1,TY1) = 1 Then
 I = I << 4
 Pulsout 18,300
 Elseif Menucheck(10,TX1,TY1) = 1 Then
 I = 0
 Pulsout 18,300
 End If
 Locate 3,3
 Print HEX4 I

 Return

 End

#INCLUDE "CT005.INC"

We must place the #include command at the end of the code, as the
generated code is in the form of a Sub, which must come after the End
statement in the main program.

CuCanvas can be downloaded at www.cubloc.com. CuCanvas is free to use
with CuTouch products.

 440

 441

APPENDIX

 442

Appendix A: ASCII CODE

Code char. Code char. Code char. Code char.
00H NUL 20H SPACE 40H @ 60H `
01H SOH 21H ! 41H A 61H a
02H STX 22H “ 42H B 62H b
03H ETX 23H # 43H C 63H c
04H EOT 24H $ 44H D 64H d
05H ENQ 25H % 45H E 65H e
06H ACK 26H & 46H F 66H f
07H BEL 27H ‘ 47H G 67H g
08H BS 28H (48H H 68H h
09H HT 29H) 49H I 69H I
0AH LF 2AH * 4AH J 6AH j
0BH VT 2BH + 4BH K 6BH k
0CH FF 2CH , 4CH L 6CH l
0DH CR 2DH - 4DH M 6DH m
0EH SO 2EH . 4EH N 6EH n
0FH SI 2FH / 4FH O 6FH o

10H DLE 30H 0 50H P 70H p
11H DC1 31H 1 51H Q 71H q
12H DC2 32H 2 52H R 72H r
13H DC3 33H 3 53H S 73H s
14H DC4 34H 4 54H T 74H t
15H NAK 35H 5 55H U 75H u
16H SYN 36H 6 56H V 76H v
17H ETB 37H 7 57H W 77H w
18H CAN 38H 8 58H X 78H x
19H EM 39H 9 59H Y 79H y
1AH SUB 3AH : 5AH Z 7AH z
1BH ESC 3BH ; 5BH [7BH {
1CH FS 3CH < 5CH \ 7CH |
1DH GS 3DH = 5DH] 7DH }
1EH RS 3EH > 5EH ^ 7EH ~
1FH US 3FH ? 5FH _ 7FH DEL

 443

Appendix B: Note for BASIC
STAMP users
When using Parallax’s Basic Stamp compatible development board, please
be aware of the following:

There is a capacitor on the Basic Stamp compatible development boards
which may cause a download error in CUBLOC Studio. Please short (or
take out) the extra capacitor connected to the DTR of the board as shown
below. The CB220 already has this capacitor on the chip itself.

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

SOUT
SIN
ATN
VSS

P0
P1
P2
P3
P4
P5
P6
P7

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

24
23
22
21
20
19
18
17
16
15
14
13

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

VIN
VSS
RES
VDD
P15
P14
P13
P12
P11
P10
P9
P8

Rx

Rx

Tx

Tx

DTR

DTR

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Short here

 444

Appendix D:
BASIC Command Summary

Command

Usage

Adin () Variable = ADIN (Channel)
 Variable : Variable to store results (No String or Single)
 Channel : AD Channel Number (not I/O Pin Number)

Alias ALIAS Registername = AliasName
Registername : Register name such as P0, M0, T0 (Do not use D area)
AliasName : An Alias for the Register chosen (up to 32 character)

Arc ARC x, y, r, start, end

Bcd2bin Variable = BCD2BIN (bcdvalue)

 Variable : Variable to store results (Returns LONG)
 bcdvalue : BCD value to convert to binary

Bclr BCLR channel, buffertype
 channel : RS232 Channel (0 to 3)
 buffertype : 0=Receive, 1=Send, 2=Both

Beep BEEP Port, Length
 Port : Port number (0 to 255)
 Length : Pulse output period (1 to 65535)

Bfree Variable = BFREE (channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0 to 3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

Bin2bcd Variable = BIN2BCD (binvalue)
 Variable : Variable to store results (Returns Long)
 binvalue : Binary value to be converted

Blen Variable = BLEN (channel, buffertype)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel number (0 to 3)
 buffertype: 0=Receive Buffer, 1=Send Buffer

Bmp BMP x, y, filenumber, layer
 X, y : x,y position to display BMP
 Filenumber : BMP File number
 Layer : Layer to display BMP

 445

Box BOX x1, y1, x2, y2

Boxclear BOXCLEAR x1, y1, x2, y2

Boxfill BOXFILL x1, y1, x2, y2,logic

 logic : 0=OR, 1=AND, 2=XOR

Bytein Variable = BYTEIN (PortBlock)
 Variable : Variable to store results (No String or Single)
 PortBlock : I/O Port Block Number (0 to 15)

Byteout BYTEOUT PortBlock, value
 PortBlock : I/O Port Block Number. (0 to 15)
 value : Value to be outputted between 0 and 255.

Circle CIRCLE x, y, r

Circlefill CIRCLEFILL x, y, r

Checkbf Variable = CHECKBF (channel)
 Variable : Variable to store results (No String or Single)
 channel : RS232 Channel (0 to 3)

Color COLOR value

Cls CLS

Clear CLEAR layer

Cmode CMODE value
 value : 0=BOX type, 1=Underline type

Compare COMPARE channel, target#, port, targetstate
Channel : High Counter channel
Target# : Target # of Pulses (CH0: 0 to 65535, CH1: 0 to 255)
Port : Output Port (DO NOT USE Input-only Ports)
Targetstate : Target Output Port State

Const CONST name [as type] = value

Const
(Array)

CONST type name [as type] = value [,value, value, value…]
 Type = Byte, Integer, Long, String Single

Contrast CONTRAST value
 value : Contrast Value

Count Variable = COUNT (channel)
 Variable : Variable to store results. (No String or Single)
 Channel : Counter Channel number (0 to 1)

 446

Countreset COUNTRESET channel

 Channel : Counter Channel (0 to 1)

Csroff CSROFF

Csron CSRON

Dcd Variable = DCD source
 Variable : Variable to store results. (No String or Single)
 Source : source value

Debug DEBUG data
 data : data to send to PC

Decr DECR variable
 Variable : Variable for decrementing. (No String or Single)

Defchr DEFCHR code, data
 Code : Custom character code (&hdb30 to &hdbff)
 Data : 32byte bitmap data

Delay DELAY time
 Time : interval variable or constant

Dim DIM variable As variabletype [,variable As variabletype]
 Variabletype : Byte, Integer, Long, Single, String

Dotsize DOTSIZE value, style

Dp Variable = DP(Variable, Decimal Places, ZeroPrint)
ZeroPrint :If ZeroPrint is set to 1, zeros are substituted for blank spaces.

Dprint DPRINT string

Dtzero DTZERO variable
 Variable : Variable for decrement. (No String or Single)

Eadin Variable = EADIN (mux)
 Variable : Variable to store results (No String or Single)
 mux : AD input Port Combination MUX (0 to 21)

Eeread Variable = EEREAD (Address, ByteLength)
 Variable : Variable to store result (No String or Single)
 Address : 0 to 4095
 ByteLength : Number of Bytes to read (1 to 4)

Eewrite EEWRITE Address, Data, ByteLength
 Address : 0 to 4095
 Data : Data to write to EEPROM (up to Long type values)
 ByteLength : Number of Bytes to write (1 to 4)

 447

Ekeypad Variable = EKEYPAD (portblockIn, portblockOut)

 Variable : Variable to store results (Returns Byte)
 PortblockIn : Port Block to receive input (0 to 15)
 PortblockOut : Port Block to output (0 to 15)

Ellipse ELLIPSE x, y, r1, r2

Elfill ELFILL x, y, r1, r2

Freepin FREEPIN I/O
 I/O : I/O PORT Number

Font FONT fontsize, efontwidth
 fontsize : 0 to 8 Font Selection
 efontwidth : 0 = fixed width, 1=variable width

Fp Variable = FP (Value, , Whole Number Digits, Fractional Number Digits)

Freqout FREQOUT Channel, FreqValue
 Channel : PWM Channel (0 to 15)
 FreqValue : Frequency value between 1 and 65535

Get Variable = GET (channel, length)
 Variable : Variable to store results (Cannot use String, Single)
 channel : RS232 Channel (0 to 3)
 length : Length of data to receive (1 to 4)

Getcrc GETCRC Variable, ArrayName, Bytelength
 variable : String Variable to store results (Integer type)
 ArrayName : Array with data(Must be a Byte array)
 Bytelength : # of bytes to calculate CRC

Getstr Variable = GETSTR (channel, length)
 Variable : String Variable to store results
 channel : RS232 Channel
 length : Length of data to receive

Getstr2 Variable = GETSTR (channel, length, stopchar)
 Variable : String Variable to store results
 channel : RS232 Channel
 length : Length of data to receive

Stopchar : Stop character ascii code

Geta GETA channel, ArrayName, bytelength
 channel : RS232 Channel (0 to 3)
 ArrayName : Array to store Received data (No String or Single)

 Bytelength : Number of Bytes to store (1 to 65535)

 448

Geta2 GETA channel, ArrayName, bytelength, stopchar

 channel : RS232 Channel (0 to 3)
 ArrayName : Array to store Received data (No String or Single)

 Bytelength : Number of Bytes to store (1 to 65535)
Stopchar : Stop character ascii code

Glayer GLAYER layernumber

 Layernumber : Set the graphic layer. (0,1,2)

Glocate GLOCATE x, y

Gpaste GPASTE x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

Gprint GPRINT string

Gpush GPUSH x1, y1, x2, y2, layer

Gpop GPOP x, y, layer, logic
 logic =0 : OR
 logic =1 : AND
 logic =2 : XOR
 logic =3 : Clear screen then pop

Heap Variable = HEAP (Address)
 Variable : Variable to store results
 Address : HEAP memory address

Heapclear HEAPCLEAR
Heapw HEAPW Address, Data

 Address : HEAP memory address
 Data : Constant or Variable with data (Byte only)

Hread Variable = HREAD (Address, ByteLength)
 Variable : Variable to store results
 Address : HEAP memory address
 ByteLength : # of bytes to read, constant or variable

Hwrite HWRITE Address, Data, ByteLength
 Address : HEAP memory address
 Data : Constant or Variable with data (whole numbers only)
 ByteLength : # of bytes to write

High HIGH Port
 Port : I/O Port number

Hpaste HPASTE x, y, layer

 449

Hp Variable = DP(Variable, Heximal Places, ZeroPrint)

ZeroPrint :If ZeroPrint is set to 1, zeros are substituted for blank spaces.
Hpop HPOP x, y, layer

Hpush HPUSH x1, y1, x2, y2, layer

I2cstart I2CSTART

I2cstop I2CSTOP

I2cread Variable = I2CREAD (dummy)

 Variable : Variable to store results. (No String or Single)
 dummy : dummy value. (Normally 0)

I2creadna Variable = I2CREADNA (dummy)
 Variable : Variable to store results. (No String or Single)
 dummy : dummy value. (Normally 0)

I2cwrite Variable = I2CWRITE data
Variable : Acknowledge
(0=Acknowledged, 1=No Acknowledgement)
 data : data to send (Byte value : 0 to 255)

In Variable = IN (Port)
 Variable : The variable to store result (No String or Single)
 Port : I/O Port number (0 to 255)

Incr INCR variable
 Variable : Variable for increment. (No String or Single)

Input INPUT Port
 Port : I/O Port number (0 to 255)

Keyin Variable = KEYIN (Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0 to 255)
 deboucingtime : Debouncing Time (1 to 65535)

Keyinh Variable = KEYINH (Port, debouncingtime)
 Variable : Variable to store results (No String or Single)
 Port : Input Port (0 to 255)
 deboucingtime : Debouncing Time (0 to 65535)

Keypad Variable = KEYPAD (PortBlock)
Variable : Variable to store results (Returns Byte, No String or Single)
PortBlock : Port Block (0 to 15)

 450

Layer LAYER layer1mode, layer2 mode, layer3 mode

 Layer1mode : Set Layer 1 mode (0=off, 1=on, 2=flash)
 Layer2mode : Set Layer 2 mode (0=off, 1=on, 2=flash)
 Layer3mode : Set Layer 3 mode (0=off, 1=on, 2=flash)

Ladderscan LADDERSCAN

Light LIGHT value
 value : Back light 0=OFF, 1=ON

Line LINE x1, y1, x2, y2

Linestyle LINESTYLE value

Lineto LINETO x, y

Low LOW Port
 Port : I/O Port number (0 to 255)

Locate LOCATE X,Y

Menu Variable = MENU (index, pos)
 Variable : Variable to store results

(1 = selected, 0 = unselected)
 Index : Menu Index
 pos : Position (0=x1, 1=y1, 2=x2, 3=y2)

Memadr Variable = MEMADR (TargetVariable)
 Variable : Variable to store results (No String or Single)
 TargetVariable : Variable to find physical memory address

Menucheck Variable = MENUCHECK (index, touchx, touchy)
 Variable : Variable to store results

(1 if selected, 0 if unselected)
 Index : Menu Index Number
 Touchx : Touch pad x axis point
 Touchy : Touch pad y axis point

Menu
Reverse

MENUREVERSE index
 Index : Menu index number

Menuset MENUSET index, style, x1, y1, x2, y2
 Index : Menu Index Number
 Style : Button Style; 0=none, 1=Box, 2=Box with Shadow
 X1,y1,x2,y2 : Menu Button location

Menutitle MENUTITLE index, x, y, string
Index :Menu index number
X,y : Title location based on left upper corner of button
string : Name of the menu

 451

Ncd Variable = NCD source

 Variable : Variable to store results. (No String or Single)
 Source : source value (0 to 31)

Nop NOP

Offset OFFSET x, y

On int ON INTx GOSUB label
 x : 0 to 3, External Interrupt Channel

On
ladderint

ON LADDERINT GOSUB label

On pad ON PAD GOSUB label

On recv ON RECV1 GOSUB label

On timer ON TIMER (interval) GOSUB label
 Interval : Interrupt Interval 1=10ms,

 2=20ms……65535=655350ms
1 to 65535 can be used

Opencom OPENCOM channel, baudrate, protocol, recvsize, sendsize

 channel : RS232 Channel (0 to 3)
 Baudrate : Baudrate (Do not use variable)
 protocol : Protocol (Do not use variable)
 recvsize : Receive Buffer Size (Max. 1024, Do not use variable)
 sendsize : Send Buffer Size (Max. 1024, Do not use variable)

Out OUT Port, Value
 Port : I/O Port number (0 to 255)
 Value : Value to be outputted to the I/O Port (1 or 0)

Output OUTPUT Port
 Port : I/O Port number (0 to 255)

Outstat Variable = OUTSTAT (Port)
 Variable : Variable to store results. (No String or Single)
 Port : I/O Port Number (0 to 255)

Overlay OVERLAY overmode
 overmode : Logical Mode (0=or, 1=and, 2=xor)

Paint PAINT x, y

Pause PAUSE value

 452

Peek Variable = PEEK (Address, Length)

 Variable : Variable to Store Result. (No String or Single)
 Address : RAM Address.
 length : Length of Bytes to read (1 to 4)

Poke POKE Address, Value, Length
 Address : RAM Address
 Value : Variable to store results (up to Long type value)
 length : length of bytes to read (1 to 4)

Print PRINT String / Variable
 String : String
 Variable : When using variables/constants,

String representation of the variable/constant will be printed.

Pset PSET x, y

Pulsout PULSOUT Port, Period
 Port : Output Port (0 to 255)
 Period : Pulse Period (1 to 65535)

Put PUT channel, data, bytelength
 channel : RS232 Channel (0 to 3)
 Data : Data to send (up to Long type value)
 Bytelength : Length of Data (1 to 3)

Puta PUTA channel, ArrayName, bytelength
 channel : RS232 Channel. (0 to 3)
 ArrayName : Array Name
 Bytelength : Bytes to Send (1 to 65535)

Puta2 PUTA2 channel, ArrayName, bytelength, Stopchar
 channel : RS232 Channel. (0 to 3)
 ArrayName : Array Name
 Bytelength : Bytes to Send (1 to 65535)
 Stopchar : Stop character ascii code

Putstr PUTSTR channel, data…
 channel : RS232 Channel. (0 to 3)
 Data : String Data (String variable or String constant)

Pwm PWM Channel, Duty, Period
 Channel : PWM Channel Number (0 to 15)
 Duty : Duty Value, must be less than the Width.
 Period : Maximum of 65535

Pwmoff PWMOFF Channel
 Channel : PWM Channel. (0 to 15)

Ramclear RAMCLEAR

 453

Reset RESET

Reverse REVERSE Port

 Port : I/O Port Number. (0 to 15)

Set
display

SET DISPLAY type, method, baud, buffersize
 type : 0=Rs232LCD, 1=GHLCD GHB3224, 2=CLCD
 Method : Communication Method 0=CuNET, 1=COM1
 baud : Baud rate (CuNET Slave address)
 Buffersize : Send Buffer Size

Set
debug

SET DEBUG On[/Off]

Set i2c SET I2C DataPort, ClockPort
 DataPort : SDA, Data Send/Receive Port. (0 to 255)
 ClockPort : SCL, Clock Send/Receive Port. (0 to 255)

Set
ladder

SET LADDER On [/Off]

Set
modbus

Set MODBUS mode, slaveaddress, returninterval
mode : 0=ASCII, 1=RTU
slaveaddress : Slave Address (1 to 254)
returninterval : return interval value (1 to 255, default value is 1)

Set
outolny

SET OUTONLY On[/Off]

Set
Pad

SET PAD mode, packet, buffersize
 mode : Bit Mode (0 to 255)
 packet : Packet Size (1 to 255)
 buffersize : Receive Buffer Size (1 to 255)

Set
rs232

SET RS232 channel, baudrate, protocol
 channel : RS232 Channel (0 to 3)
 Baudrate : Baudrate (Do not use variable)
 protocol : Protocol (Do not use variable)

Set
until

SET UNTIL channel, packetlength, stopchar
 channel : RS232 Channel. (0 to 3)
 packetlength : Length of packet (0 to 255)
 stopchar : Character to catch

Set
Int

SET INTx mode
 x : 0 to 3, External Interrupt Channel
 mode : 0=Falling Edge, 1=Rising Edge, 2=Changing Edge

Set
Onglobal

SET ONGLOBAL On[/Off]

Set
onint

SET ONINTx On[/Off]

Set
onladderint

SET ONLADDERINT On[/Off]

 454

Set
onpad

SET ONPAD On[/Off]

Set
onrecv

SET ONRECV0 On[/Off]
SET ONRECV1 On[/Off]
SET ONRECV2 On[/Off]
SET ONRECV3 On[/Off]

Set
Ontimer

SET ONTIMER On[/Off]

Set SPI SET SPI clk, mosi, miso, mode
 clk : port for clock output.
 mosi : port for data (Master output Slave input).
 miso : port for data (Master input Slave output).
 mode : communication mode
bit 3: 0= MSB start, 1=LSB star.t
bit 2: 0=wait at the clock LOW, 1=wait at the clock HIGH.
bit 1: OUTPUT sampling point; 0=before rising edge, 1=after falling
edge.
bit 0: INPUT sampling point; 0=before rising edge, 1=after falling edge.

Shiftin Variable = SHIFTIN (clock, data, mode, bitlength)
Variable : Variable to store results. (No String or Single)
Clock : Clock Port. (0 to 255)
Data : Data Port. (0 to 255)
Mode : 0 = LSB First (Least Significant Bit First), After Rising Edge

 1 = MSB First (Most Significant Bit First), After Rising Edge
 2 = LSB First (Least Significant Bit First), After Falling Edge
 3 = MSB First (Most Significant Bit First), After Falling Edge
4 = LSB First (Least Significant Bit First), Before Rising Edge
 5 = MSB First (Most Significant Bit First), Before Rising Edge

 bitlength : Length of bits (8 to 16)

Shiftout SHIFTOUT clock, data, mode, variable, bitlength
 Clock : Clock Port. (0 to 255)
 Data : Data Port. (0 to 255)
 Mode : 0 = LSB First (Least Significant Bit First)
 1 = MSB First (Most Significant Bit First)
 2 = MSB First(Most Significant Bit First) , Create ACK (For I2C)

 variable : Variable to store data (up to 65535)
 bitlength : Bit Length (8 to 16)

SPI Indata = SPI (Outdata, Bits)
 Indata : input data
 Outdata : output data,
 bits : Number of bits (1 to 32)

 455

Stepaccel STEPACCEL Channel, Port, FreqBASE, FreqTOP, FreqACCEL, Qty

 Channel : StepPulse Channel (Stepaccel supports only 0)
 Port : Output Port
 FreqBASE : The starting stepper frequency (Up to FreqTOP)
 FreqTOP : The frequency after acceleration is finished (Up to 3.3KHz)
 FreqACCEL : The acceleration in steps per second
 Qty : # of pulses to output (up to 2147483647)

Steppulse STEPPULSE Channel, Port, Freq, Qty
 Channel : StepPulse Channel(0 or 1)
 Port : Output Port
 Freq : Output Frequency (Up to 15kHz)
 Qty : # of pulses to output (up to 2147483647)

Stepstat Variable = STEPSTAT (Channel)
 Variable : Variable to store results
 Channel : StepPulse Channel(0 or 1)

Stepstop STEPSTOP Channel
 Channel : StepPulse Channel (0 or 1)

Style STYLE bold, inverse, underline
 bold : 0=Normal, 2 or 3 =Bold
 inverse : 0=Normal, 1=Inverse
 underline : 0=Normal, 1=Underline

Sys Variable = SYS (address)
 Variable : Variable to store results. (No String or Single)
 address : Address. (0 to 255)

Tadin Variable = TADIN (Channel)
 Variable : Variable to store results. (No String or Single)
 Channel : AD Channel Number (Not Port number, 0 to 15)

Time Variable = TIME (address)
 Variable : Variable to store results. (No String or Single)
 address : Address of time value (0 to 6)

Timeset TIMESET address, value
 address : Address of time value (0 to 6)
 value : time value. (0 to 255)

Udelay UDELAY time
 time : interval (1 to 65535)

Usepin USEPIN I/O, In/Out, AliasName
 I/O : I/O Port Number. (0 to 255)
 In/Out : “In” or “Out”
 AliasName : Alias for the port (Optional)

 456

Utmax UTMAX variable

 Variable : Variable for decrement. (No String or Single)

Wait WAIT time
 time : delay time (mS) 10 to 2147483640

Waittx WAITTX channel
 channel : RS232Channel. (0 to 3)

Wmode WMODE value
 value : 0=FAST, 1=SLOW

 457

Index
＃

#endif...................................... 99
#if constant.............................. 99
#ifdef 100
#ifndef................................... 101

？

? 113

Ａ

ABS....................................... 111
ADIN 124
ALIAS 126
AND....................................... 378
ARC....................................... 278
Arc Cos 110
Arc Sine 110
Arc Tan.................................. 110
ASC....................................... 122

Ｂ

BCD2BIN................................ 127
BCLR 128
BEEP...................................... 129
BFREE.................................... 130
BIN2BCD................................ 131
BLEN 132
BMP....................................... 279
BOX....................................... 271
BOXCLEAR 271
BOXFILL................................. 271
BYTEIN 133
BYTEOUT 134

Ｃ

CALLS.....................................407
CheckBf135
CHR122
CIRCLE272
CIRCLEFILL272
CLEAR264
CLS 257, 264
CMODE...................................270
COLOR....................................277
COMPARE136
CONTRAST..............................267
Cos ..110
COUNT137
COUNTRESET139
CSGDEC288
CSGHEX..................................288
CSGNPUT................................287
CSGXPUT................................288
Csroff257
CSROFF264
Csron257
CSRON264
CTD..387
CTU..387

Ｄ

DCD140
DEBUG141
dec...113
DECR......................................144
DEFCHR..................................279
DELAY145
DIFD380
DIFU.......................................380

 458

DO...LOOP.............................. 146
DOTSIZE................................ 277
DP... 115
DPRINT.................................. 275
DTZERO................................. 148
DWADD 398
DWAND.................................. 403
DWDEC.................................. 397
DWDIV 400
DWINC 397
DWMOV 393
DWMUL.................................. 399
DWOR.................................... 401
DWROL.................................. 404
DWROR.................................. 405
DWSUB.................................. 398
DWXCHG 394
DWXOR.................................. 402

Ｅ

EADIN.................................... 149
EEREAD 151
EEWRITE................................ 152
EKEYPAD................................ 153
ELFILL.................................... 273
ELLIPSE 273
EXP 110

Ｆ

FABS 111
FLOAT.................................... 114
FLOOR 111
FMOV..................................... 395
FONT 268
FOR…NEXT............................. 154
FP.. 117
FREEPIN................................. 156
FREQOUT 157

Ｇ

GET..159
GETA......................................160
GETA2161
GETCRC..................................162
GETSTR163
GETSTR2164
GLAYER266
GLOCATE................................274
GMOV.....................................396
GOSUB165
GOTO 165, 406
GPASTE282
GPOP......................................281
GPRINT...................................274
GPUSH281

Ｈ

HEAP......................................168
HEAPCLEAR.............................168
HEAPW168
hex ..112
HIGH......................................170
HP..116
HPaste....................................283
HPOP......................................283
HPUSH....................................283
HREAD....................................167
HWRITE..................................167
Hyperbolic Cos110
Hyperbolic Sin110
Hyperbolic Tan110

Ｉ

I2CREAD.................................172
I2CREADNA.............................173
I2CSTART171
I2CSTOP.................................171

 459

I2CWRITE 174
If…Then…Elseif...Else…EndIf.... 175
IN.. 176
INCR...................................... 177
INPUT.................................... 178
INTON 408

Ｋ

KCTD..................................... 389
KCTU..................................... 389
KEYIN.................................... 179
KEYINH.................................. 180
KEYPAD 181
KTAON................................... 385
KTON..................................... 385

Ｌ

Label 165
LABEL.................................... 406
Ladder Special relays............... 410
LADDERSCAN 182
LAYER.................................... 265
left .. 118
LEN 119
LIGHT.................................... 267
LINE 270
LINESTYLE 277
LINETO 270
Ln ... 110
LOAD..................................... 377
LOADN................................... 377
LOCATE...........................257, 264
LOG....................................... 110
LOG10 110
LOW 183
LTRIM.................................... 120

Ｍ

MCS381
MCSCLR..................................381
MEMADR.................................184
MENU426
MENUCHECK426
MENUREVERSE........................426
MENUSET................................425
MENUTITLE425
MID..118

Ｎ

NCD185
Nop..186
NOT378

Ｏ

OFFSET...................................276
ON INT187
ON LADDERINT188
ON PAD190
ON RECV191
ON TIMER192
OPENCOM...............................193
OR ...378
OUT196
OUTPUT..................................197
OUTSTAT198
OVERLAY266

Ｐ

PAINT.....................................278
PAUSE198
PEEK199
POKE......................................199
PRINT............................. 257, 265
PSET277

 460

PULSOUT 200
PUT 201
PUTA 202
PUTA2.................................... 203
PUTSTR.................................. 204
PWM...................................... 205
PWMOFF 206

Ｒ

RAMCLEAR 207
Reset..................................... 208
RET 407
RETURN 165
REVERSE................................ 209
right 118
RND....................................... 210
RSTOUT 379
RTRIM.................................... 120

Ｓ

SBRT 407
Select..Case 211
SET DEBUG 212
SET DISPLAY 255
SET I2C 215
SET INTx................................ 216
SET LADDER On...................... 217
Set Modbus 218
SET ONGLOBAL 219
SET ONINTx 220
SET ONLADDERINT 221
SET ONPAD 222
SET ONRECV 223
SET ONTIMER......................... 224
SET OUTONLY......................... 225
SET PAD................................. 226
Set Rs232 229
Set RS485.............................. 230
SET SPI.................................. 235
SET UNTIL.............................. 232

SETOUT..................................379
SHIFTIN..................................233
SHIFTOUT...............................234
Sin ...110
SPC..119
SPI...235
SQR110
STEPACCEL238
STEPOUT384
STEPPULSE236
STEPSET.................................383
STEPSTAT...............................237
STEPSTOP...............................237
STRING119
STYLE.....................................269
SYS..241

Ｔ

TADIN242
Tan ..110
TAOFF386
TAON385
TIME243
TIMESET.................................245
TOFF386
TON385

Ｕ

UDELAY247
UP/DOWN Counter...................388
Usepin248
UTMAX249

Ｖ

VAL ..121
VALHEX121
VALSNG..................................121
VAR..80

 461

Ｗ

WADD.................................... 398
WAIT 250
WAITDRAW 427
WAITTX 251
WAND.................................... 403
WDEC.................................... 397
WDIV..................................... 400

WINC397
WMOV393
WMUL.....................................399
WOR401
WROL.....................................404
WROR.....................................405
WSUB.....................................398
WXCHG394
WXOR.....................................402

	Chapter 1: Getting Started
	What is CUBLOC?
	CUBLOC Specifications
	Ladder Logic and BASIC
	Multi-tasking of Ladder Logic and BASIC
	Advantages of an On-Chip PLC/Embedded Computer
	Development Environment
	Download and Monitoring through the Internet
	Hints for Traditional PLC Users
	Hints for Microcontroller Users
	CUBLOC’s Internal Structure
	CUBLOC Peripherals

	Chapter 2: Hardware
	Hardware Features
	CB220 / CB320
	Supplying power to the CB220 / CB320
	CB280 / CB380
	How to supply power to the CB280 / CB380
	CB290
	CB405
	How to connect a battery to CB290/CB405
	Dimensions
	CUBLOC Chipset : CB280CS

	Chapter 3: CUBLOC STUDIO
	CUBLOC STUDIO Basics
	Creating BASIC Code
	Debugging
	Menus

	Chapter 4: CUBLOC BASIC Language
	CUBLOC BASIC Features
	Simple BASIC program
	Sub and Function
	Variables
	String
	About Variable Memory Space
	Arrays
	Bits and Bytes modifiers
	Constants
	Constant Arrays...
	Operators
	Expressing Numbers
	The BASIC Preprocessor
	Conditional
	To use LADDER ONLY
	To use BASIC ONLY
	Interrupts
	More about Interrupts…
	Pointers using Peek, Poke, and Memadr
	Sharing Data

	Chapter 5: CUBLOC BASIC Functions
	Math Functions
	Type Conversion
	String Functions

	Chapter 6: CUBLOC BASIC Statements & Library
	Adin()
	Alias
	Bcd2bin
	Bclr
	Beep
	Bfree()
	Bin2bcd
	Blen()
	Bytein()
	Byteout
	CheckBf()
	Compare
	Count()
	Countreset
	Dcd
	Debug
	Decr
	Delay
	Do...Loop
	Dtzero
	EAdin()
	Eeread()
	Eewrite
	Ekeypad
	For...Next
	Freepin
	Freqout
	Get()
	Geta
	Geta2
	Getcrc
	Getstr()
	Getstr2()
	Gosub...Return
	Goto
	Hread()
	Hwrite
	Heapclear
	Heap()
	Heapw
	High
	I2Cstart
	I2Cstop
	I2Cread()
	I2Creadna()
	I2Cwrite()
	If...Then...Elseif…Endif
	In()
	Incr
	Input
	Keyin
	Keyinh
	Keypad
	Ladderscan
	Low
	Memadr()
	Ncd
	Nop
	On Int
	On Ladderint Gosub
	On Pad Gosub
	On Recv
	On Timer()
	Opencom
	Out
	Output
	Outstat()
	Pause
	Peek()
	Poke
	Pulsout
	Put
	Puta
	Puta2
	Putstr
	Pwm
	Pwmoff
	Ramclear
	Reset
	Reverse
	Rnd()
	Select...Case
	Set Debug
	Debug Command How-to
	Set I2c
	Set Int
	Set Ladder on/off
	Set Modbus
	Set Onglobal
	Set Onint
	Set OnLadderint
	Set Onpad
	Set Onrecv
	Set Ontimer
	Set Outonly
	Set Pad
	Set Rs232
	Set Rs485
	Set Until
	Shiftin()
	Shiftout
	 Spi
	Set Spi
	Steppulse
	Stepstop
	Stepstat()
	Stepaccel
	Sys()
	Tadin()
	Time()
	Timeset
	Udelay
	Usepin
	Utmax
	Wait
	WaitTx

	Chapter 7: CUBLOC Display Library
	Cls
	Csron
	Csroff
	Locate
	Print
	CLCD Module
	GHLCD Graphic LCD : GHB3224 Series
	Cls
	Clear
	Csron
	Csroff
	Locate
	Print
	Layer
	GLayer
	Overlay
	Contrast
	Light
	Font
	Style
	Cmode
	Line
	Lineto
	Box
	Boxclear
	Boxfill
	Circle
	Circlefill
	Ellipse
	Elfill
	Glocate
	Gprint
	Dprint
	Offset
	Pset
	Color
	Linestyle
	Dotsize
	Paint
	Arc
	Defchr
	Bmp
	Gpush
	Gpop
	Gpaste
	Hpush
	Hpop
	Hpaste
	Seven Segment Display: CSG
	Csgdec
	Csgnput
	Csgxput
	Csgdec
	Csghex

	Chapter 8: Interfacing
	Input/Output Circuits
	RS232 HOWTO
	CuNET
	CUBLOC STUDY BOARD Circuit Diagram
	About I2C…
	More About I²C… (Advanced)

	Chapter 9: MODBUS
	About MODBUS…
	MODBUS ASCII Master Mode
	MODBUS ASCII Slave Mode
	MODBUS RTU Master Mode

	Chapter 10: Application Notes
	NOTE 1. Switch Input
	NOTE 2. Keypad Input
	NOTE 3. Temperature Sensor
	NOTE 4. Sound Bytes
	NOTE 5. RC Servo Motor

	Chapter 12: Ladder Logic
	CUTOUCH
	APPENDIX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

