LM3224

LM3224 615kHz/1.25MHz Step-up PWM DC/DC Converter

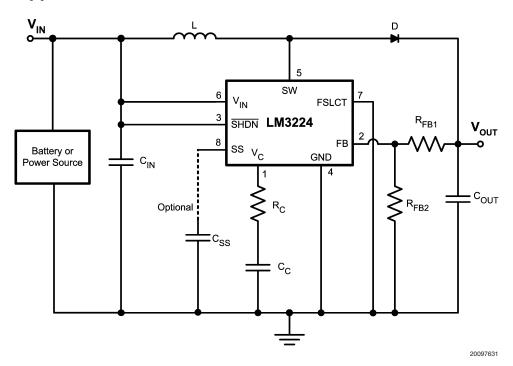
Literature Number: SNVS277B

LM3224

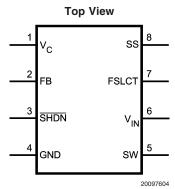
615kHz/1.25MHz Step-up PWM DC/DC Converter

General Description

The LM3224 is a step-up DC/DC converter with a 0.15Ω (typ.), 2.45A (typ.) internal switch and pin selectable operating frequency. With the ability to convert 3.3V to multiple outputs of 8V, -8V, and 23V, the LM3224 is an ideal part for biasing TFT displays. With the high current switch it is also ideal for driving high current white LEDs for flash applications. The LM3224 can be operated at switching frequencies of 615kHz and 1.25MHz allowing for easy filtering and low noise. An external compensation pin gives the user flexibility in setting frequency compensation, which makes possible the use of small, low ESR ceramic capacitors at the output. An external soft-start pin allows the user to control the amount of inrush current during start up. The LM3224 is available in a low profile 8-lead MSOP package.


Features

- Operating voltage range of 2.7V to 7V
- 615kHz/1.25MHz pin selectable frequency operation
- Over temperature protection
- Optional soft-start function
- 8-Lead MSOP package

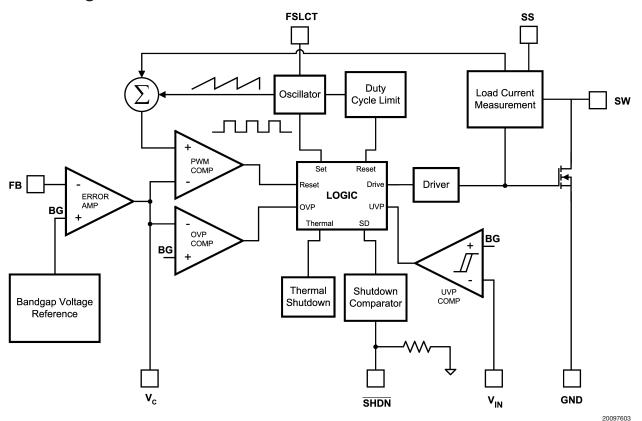

Applications

- TFT Bias Supplies
- Handheld Devices
- Portable Applications
- GSM/CDMA Phones
- Digital Cameras
- White LED Flash/Torch Applications

Typical Application Circuit

Connection Diagram

8-Lead Plastic MSOP NS Package Number MUA08A


Ordering Information

Order Number	Spec.	Package	NSC Package	Supplied As	Package Top Mark
		Туре	Drawing		
LM3224MM-ADJ		MSOP-8	MUA08A	1000 Units, Tape and	SEKB
				Reel	
LM3224MMX-ADJ		MSOP-8	MUA08A	3500 Units, Tape and	SEKB
				Reel	
LM3224MM-ADJ	NOPB	MSOP-8	MUA08A	1000 Units, Tape and	SEKB
				Reel	
LM3224MMX-ADJ	NOPB	MSOP-8	MUA08A	3500 Units, Tape and	SEKB
				Reel	

Pin Descriptions

Pin	Name	Function	
1	V _C	Compensation network connection. Connected to the output of the voltage error amplifier.	
2	FB	Output voltage feedback input.	
3	SHDN	Shutdown control input, active low. This pin has an internal pulldown resistor so the	
		default condition is off. The pin must be pulled high to turn on the device.	
4	GND	Analog and power ground.	
5	SW	Power switch input. Switch connected between SW pin and GND pin.	
6	V _{IN}	Analog power input.	
7	FSLCT	Switching frequency select input. V _{IN} = 1.25MHz. Ground = 615kHz.	
8	SS	Soft-start Pin.	

Block Diagram

General Description

The LM3224 utilizes a PWM control scheme to regulate the output voltage over all load conditions. The operation can best be understood referring to the block diagram and Figure 1 of the Operation section. At the start of each cycle, the oscillator sets the driver logic and turns on the NMOS power device conducting current through the inductor, cycle 1 of Figure 1 (a). During this cycle, the voltage at the $V_{\rm C}$ pin controls the peak inductor current. The V_{C} voltage will increase with larger loads and decrease with smaller. This voltage is compared with the summation of the SW voltage and the ramp compensation. The ramp compensation is used in PWM architectures to eliminate the sub-harmonic oscillations that occur during duty cycles greater than 50%. Once the summation of the ramp compensation and switch voltage equals the $V_{\rm C}$ voltage, the PWM comparator resets the driver logic turning off the NMOS power device. The inductor current then flows through the schottky diode to the load and output capacitor, cycle 2 of *Figure 1* (b). The NMOS power device is then set by the oscillator at the end of the period and current flows through the NMOS power device once again.

The LM3224 has dedicated protection circuitry running during normal operation to protect the IC. The Thermal Shutdown circuitry turns off the NMOS power device when the die temperature reaches excessive levels. The UVP comparator protects the NMOS power device during supply power startup and shutdown to prevent operation at voltages less than the minimum input voltage. The OVP comparator is used to prevent the output voltage from rising at no loads allowing full PWM operation over all load conditions. The LM3224 also features a shutdown mode decreasing the supply current to $0.1\mu A$ (typ.).

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

V _{IN}	7.5V
SW Voltage	21V
FB Voltage (Note 2)	7V
V _C Voltage (Note 3)	$1.26V \pm 0.3V$
SHDN Voltage	7.5V
FSLCT	7.5V
Maximum Junction	150°C

Temperature

Power Dissipation(Note 4) Internally Limited Lead Temperature 300°C

Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C
ESD Susceptibility	
(Note 5)	
Human Body Model	2kV
Machine Model	200V

Operating Conditions

Operating Junction

Temperature Range (Note 6) -40°C to +125°C
Storage Temperature -65°C to +150°C
Supply Voltage 2.7V to 7V
Maximum Output Voltage 20V

Electrical Characteristics

Specifications in standard type face are for $T_J = 25^{\circ}C$ and those with **boldface type** apply over the full **Operating Temperature Range** ($T_J = -40^{\circ}C$ to +125°C). $V_{IN} = 2.7V$, FSLCT = $\overline{SHDN} = V_{IN}$, and $I_L = 0A$, unless otherwise specified.

Symbol	Parameter	Conditions	Min (Note 6)	Typ (Note 7)	Max (Note 6)	Units
Iq	Quiescent Current	FB = 2V (Not Switching)		1.3	2.0	mA
		V _{SHDN} = 0V		0.1	2.0	μA
V _{FB}	Feedback Voltage		1.2285	1.26	1.2915	V
I _{CL} (Note 8)	Switch Current Limit	V _{IN} = 2.7V (Note 9)	1.9	2.45	2.8	
		$V_{IN} = 3V, V_{OUT} = 8V$		2.1		Α
		$V_{IN} = 3V, V_{OUT} = 5V$		2.2		
$%V_{FB}/\Delta V_{IN}$	Feedback Voltage Line Regulation	$2.7V \le V_{IN} \le 7V$		0.085	0.15	%/V
I _B	FB Pin Bias Current (Note 10)			35	250	nA
I _{SS}	SS Pin Current		7.5	11	13	μA
V _{SS}	SS Pin Voltage		1.2090	1.2430	1.2622	
V _{IN}	Input Voltage Range		2.7		7	V
g _m	Error Amp Transconductance	$\Delta I = 5\mu A$	40	87	135	μmho
A _V	Error Amp Voltage Gain			78		V/V
D _{MAX}	Maximum Duty Cycle		85	92.5		%
f _S	Switching Frequency	FSLCT = Ground	450	615	750	kHz
		FSLCT = V _{IN}	0.9	1.25	1.5	MHz
I _{SHDN}	Shutdown Pin Current	V _{SHDN} = 2.7V		2.4	5.0	μΑ
		$V_{SHDN} = 0.3V$		0.3	1.2	
IL	Switch Leakage Current	V _{SW} = 20V		0.2	8.0	μΑ
R _{DSON}	Switch R _{DSON}	$V_{IN} = 2.7V, I_{SW} = 1A$		0.15	0.4	Ω
Th _{SHDN}	Shutdown Threshold	Output High	1.2	0.8		V
		Output Low		0.8	0.3	V
UVP	On Threshold		2.3	2.5		V
	Off Threshold			2.6	2.7	V

Note 1: Absolute maximum ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.

Note 3: Under normal operation the V_C pin may go to voltages above this value. This maximum rating is for the possibility of a voltage being applied to the pin, however the V_C pin should never have a voltage directly applied to it.

Note 4: The maximum allowable power dissipation is a function of the maximum junction temperature, $T_J(MAX)$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: P_D (MAX) = $(T_{J(MAX)} - T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.

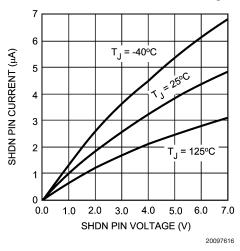
Note 2: The FB pin should never exceed $V_{\mbox{\scriptsize IN}}.$

Electrical Characteristics (Continued)

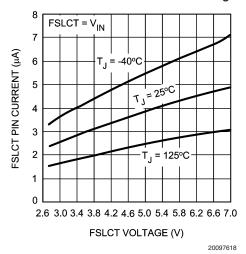
Note 5: The human body model is a 100 pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. The machine model is a 200pF capacitor discharged directly into each pin.

Note 6: All limits guaranteed at room temperature (standard typeface) and at temperature extremes (bold typeface). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

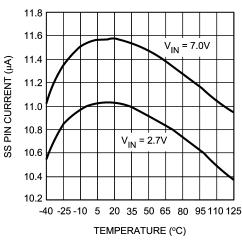
Note 7: Typical numbers are at 25°C and represent the most likely norm.


Note 8: Duty cycle affects current limit due to ramp generator.

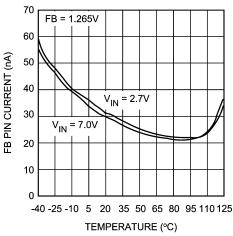
Note 9: Current limit at 0% duty cycle. See TYPICAL PERFORMANCE section for Switch Current Limit vs. V_{IN}


Note 10: Bias current flows into FB pin.

Typical Performance Characteristics

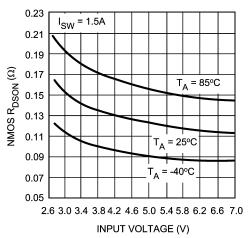

SHDN Pin Current vs. SHDN Pin Voltage

FSLCT Pin Current vs. FSLCT Pin Voltage

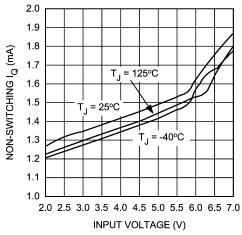


SS Pin Current vs. Temperature

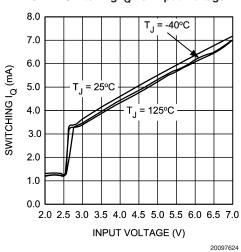
20097617


FB Pin Current vs. Temperature

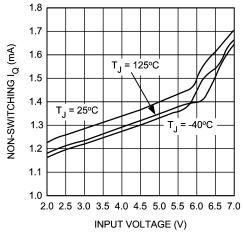
20097619


Typical Performance Characteristics (Continued)

NMOS R_{DSON} vs. Input Voltage

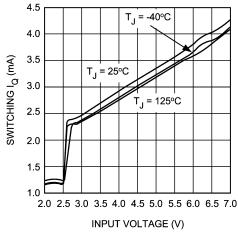

20097620

1.25MHz Non-switching I_Q vs. Input Voltage

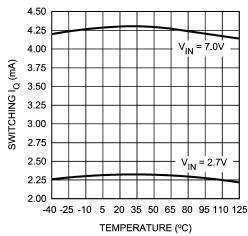


20097622

1.25MHz Switching I_Q vs. Input Voltage

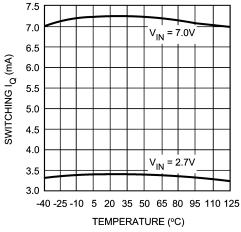


615kHz Non-switching I_Q vs. Input Voltage

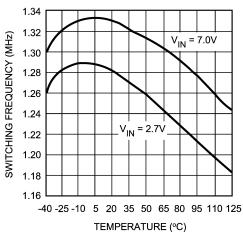

20097621

615kHz Switching I_Q vs. Input Voltage

20097623

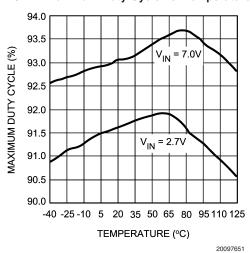

615kHz Switching I_Q vs. Temperature

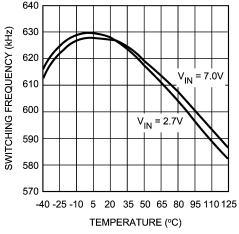
20097625


Typical Performance Characteristics (Continued)

1.25MHz Switching I_Q vs. Temperature

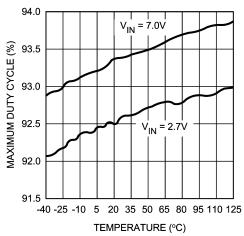
20097626


1.25MHz Switching Frequency vs. Temperature

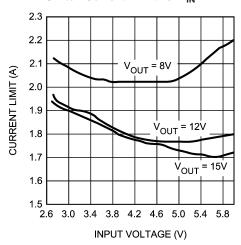

20097628

7

1.25MHz Maximum Duty Cycle vs. Temperature

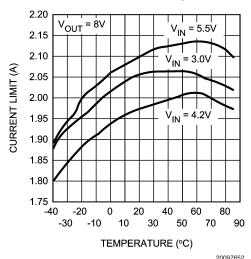


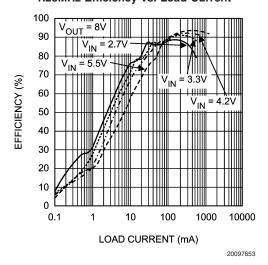
615kHz Switching Frequency vs. Temperature


20097627

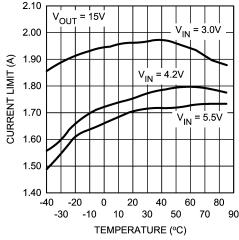
615kHz Maximum Duty Cycle vs. Temperature

20097629

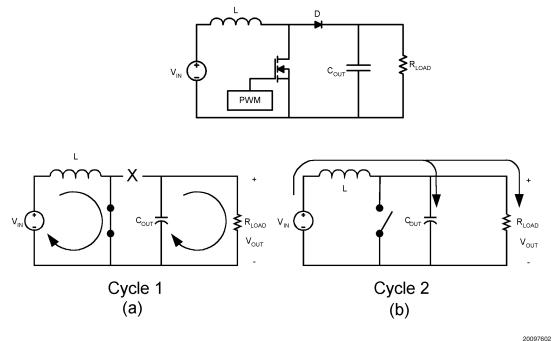

Switch Current Limit vs. V_{IN}


20097660

Typical Performance Characteristics (Continued)


Switch Current Limit vs. Temperature

1.25MHz Efficiency vs. Load Current



Switch Current Limit vs. Temperature

20097662

Operation

2009760

FIGURE 1. Simplified Boost Converter Diagram
(a) First Cycle of Operation (b) Second Cycle Of Operation

CONTINUOUS CONDUCTION MODE

The LM3224 is a current-mode, PWM boost regulator. A boost regulator steps the input voltage up to a higher output voltage. In continuous conduction mode (when the inductor current never reaches zero at steady state), the boost regulator operates in two cycles.

In the first cycle of operation, shown in Figure 1 (a), the transistor is closed and the diode is reverse biased. Energy is collected in the inductor and the load current is supplied by \mathbf{C}_{OUT} .

The second cycle is shown in *Figure 1* (b). During this cycle, the transistor is open and the diode is forward biased. The energy stored in the inductor is transferred to the load and output capacitor.

The ratio of these two cycles determines the output voltage. The output voltage is defined approximately as:

$$V_{OUT} = \frac{V_{IN}}{1-D}, D' = (1-D) = \frac{V_{IN}}{V_{OUT}}$$

where D is the duty cycle of the switch, D and D' will be required for design calculations.

SETTING THE OUTPUT VOLTAGE

The output voltage is set using the feedback pin and a resistor divider connected to the output as shown in the typical operating circuit. The feedback pin voltage is 1.26V, so the ratio of the feedback resistors sets the output voltage according to the following equation:

$$R_{FB1} = R_{FB2} \times \frac{V_{OUT} - 1.26}{1.26} \Omega$$

SOFT-START CAPACITOR

The LM3224 has a soft-start pin that can be used to limit the inductor inrush current on start-up. The external SS pin is used to tailor the soft-start for a specific application but is not required for all applications and can be left open when not needed. When used, a current source charges the external soft-start capacitor, Css. The soft-start time can be estimated as:

THERMAL SHUTDOWN

The LM3224 includes thermal shutdown protection. If the die temperature exceeds 140°C the regulator will shut off the power switch, significantly reducing power dissipation in the device. The switch will remain off until the die temperature is reduced to approximately 120°C. If the cause of the excess heating is not removed (excessive ambient temperature, excessive power dissipation, or both) the device will continue to cycle on and off in this manner to protect from damage.

Operation (Continued)

INTRODUCTION TO COMPENSATION

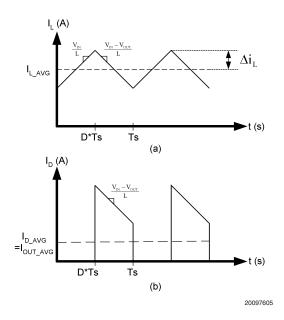


FIGURE 2. (a) Inductor current. (b) Diode current.

The LM3224 is a current mode PWM boost converter. The signal flow of this control scheme has two feedback loops, one that senses switch current and one that senses output voltage.

To keep a current programmed control converter stable above duty cycles of 50%, the inductor must meet certain criteria. The inductor, along with input and output voltage, will determine the slope of the current through the inductor (see *Figure 2* (a)). If the slope of the inductor current is too great, the circuit will be unstable above duty cycles of 50%. A 10µH to 15µH inductor is recommended for most 615 kHz applications, while a 4.7µH to 10µH inductor may be used for most 1.25 MHz applications. If the duty cycle is approaching the maximum of 85%, it may be necessary to increase the inductance by as much as 2X. See *Inductor and Diode Selection* for more detailed inductor sizing.

The LM3224 provides a compensation pin ($V_{\rm C}$) to customize the voltage loop feedback. It is recommended that a series combination of R_C and C_C be used for the compensation network, as shown in the typical application circuit. For any given application, there exists a unique combination of R_C and C_C that will optimize the performance of the LM3224 circuit in terms of its transient response. The series combination of R_C and C_C introduces a pole-zero pair according to the following equations:

$$f_{ZC} = \frac{1}{2\pi R_{C}C_{C}} Hz$$

$$f_{PC} = \frac{1}{2\pi(R_C + R_O)C_C} Hz$$

where R_O is the output impedance of the error amplifier, approximately $900k\Omega.$ For most applications, performance can be optimized by choosing values within the range $5k\Omega \le R_C \le 100k\Omega$ (R_C can be up to $200k\Omega$ if C_{C2} is used, see High

Output Capacitor ESR Compensation) and 680pF \leq C_C \leq 10nF. Refer to the Applications Information section for recommended values for specific circuits and conditions. Refer to the Compensation section for other design requirement.

COMPENSATION

This section will present a general design procedure to help insure a stable and operational circuit. The designs in this datasheet are optimized for particular requirements. If different conversions are required, some of the components may need to be changed to ensure stability. Below is a set of general guidelines in designing a stable circuit for continuous conduction operation, in most all cases this will provide for stability during discontinuous operation as well. The power components and their effects will be determined first, then the compensation components will be chosen to produce stability.

INDUCTOR AND DIODE SELECTION

Although the inductor sizes mentioned earlier are fine for most applications, a more exact value can be calculated. To ensure stability at duty cycles above 50%, the inductor must have some minimum value determined by the minimum input voltage and the maximum output voltage. This equation is:

$$L > \frac{V_{IN}R_{DSON}}{0.144 \text{ fs}} (\frac{D}{D'} - 1) (\text{in H})$$

where fs is the switching frequency, D is the duty cycle, and $R_{\rm DSON}$ is the ON resistance of the internal switch taken from the graph "NMOS $R_{\rm DSON}$ vs. Input Voltage" in the *Typical Performance Characteristics* section. This equation is only good for duty cycles greater than 50% (D>0.5), for duty cycles less than 50% the recommended values may be used. The corresponding inductor current ripple as shown in *Figure 2* (a) is given by:

$$\Delta i_L = \frac{V_{IN}D}{2Lfs}$$
 (in Amps)

The inductor ripple current is important for a few reasons. One reason is because the peak switch current will be the average inductor current (input current or I_{LOAD}/D') plus $\Delta i_L.$ As a side note, discontinuous operation occurs when the inductor current falls to zero during a switching cycle, or Δi_L is greater than the average inductor current. Therefore, continuous conduction mode occurs when Δi_L is less than the average inductor current. Care must be taken to make sure that the switch will not reach its current limit during normal operation. The inductor must also be sized accordingly. It should have a saturation current rating higher than the peak inductor current expected. The output voltage ripple is also affected by the total ripple current.

The output diode for a boost regulator must be chosen correctly depending on the output voltage and the output current. The typical current waveform for the diode in continuous conduction mode is shown in *Figure 2* (b). The diode must be rated for a reverse voltage equal to or greater than the output voltage used. The average current rating must be greater than the maximum load current expected, and the peak current rating must be greater than the peak inductor current. During short circuit testing, or if short circuit conditions are possible in the application, the diode current rating

Operation (Continued)

must exceed the switch current limit. Using Schottky diodes with lower forward voltage drop will decrease power dissipation and increase efficiency.

DC GAIN AND OPEN-LOOP GAIN

Since the control stage of the converter forms a complete feedback loop with the power components, it forms a closed-loop system that must be stabilized to avoid positive feedback and instability. A value for open-loop DC gain will be required, from which you can calculate, or place, poles and zeros to determine the crossover frequency and the phase margin. A high phase margin (greater than 45°) is desired for the best stability and transient response. For the purpose of stabilizing the LM3224, choosing a crossover point well below where the right half plane zero is located will ensure sufficient phase margin.

To ensure a bandwidth of 1/2 or less of the frequency of the RHP zero, calculate the open-loop DC gain, $A_{\rm DC}$. After this value is known, you can calculate the crossover visually by placing a -20dB/decade slope at each pole, and a +20dB/decade slope for each zero. The point at which the gain plot crosses unity gain, or 0dB, is the crossover frequency. If the crossover frequency is less than 1/2 the RHP zero, the phase margin should be high enough for stability. The phase margin can also be improved by adding $C_{\rm C2}$ as discussed later in this section. The equation for $A_{\rm DC}$ is given below with additional equations required for the calculation:

$$A_{DC(DB)} = 20log_{10} \left\langle \!\! \left(\frac{R_{FB2}}{R_{FB1} + R_{FB2}} \right) \!\! \frac{g_m R_O D'}{R_{DSON}} \!\! \left\{ \!\! \left[(\omega \, cLeff) \! / \! / R_L \! \right] \!\! / \!\! (ln \, dB) \right. \right.$$

$$\omega c \cong \frac{2fs}{nD'}$$
 (in rad/s)

Leff =
$$\frac{L}{(D')^2}$$

$$n = 1 + \frac{2mc}{m1} \text{ (no unit)}$$

$$mc \approx 0.072fs (in V/s)$$

$$m1 \cong \frac{V_{IN}R_{DSON}}{L} \ (in \ V/s)$$

where $\rm R_L$ is the minimum load resistance, $\rm V_{IN}$ is the minimum input voltage, $\rm g_m$ is the error amplifier transconductance found in the *Electrical Characteristics* table, and $\rm R_{DSON}$ is the value chosen from the graph "NMOS $\rm R_{DSON}$ vs. Input Voltage" in the *Typical Performance Characteristics* section.

INPUT AND OUTPUT CAPACITOR SELECTION

The switching action of a boost regulator causes a triangular voltage waveform at the input. A capacitor is required to reduce the input ripple and noise for proper operation of the regulator. The size used is dependant on the application and board layout. If the regulator will be loaded uniformly, with very little load changes, and at lower current outputs, the input capacitor size can often be reduced. The size can also be reduced if the input of the regulator is very close to the

source output. The size will generally need to be larger for applications where the regulator is supplying nearly the maximum rated output or if large load steps are expected. A minimum value of $10\mu F$ should be used for the less stressful condtions while a $22\mu F$ to $47\mu F$ capacitor may be required for higher power and dynamic loads. Larger values and/or lower ESR may be needed if the application requires very low ripple on the input source voltage.

The choice of output capacitors is also somewhat arbitrary and depends on the design requirements for output voltage ripple. It is recommended that low ESR (Equivalent Series Resistance, denoted $R_{\rm ESR}$) capacitors be used such as ceramic, polymer electrolytic, or low ESR tantalum. Higher ESR capacitors may be used but will require more compensation which will be explained later on in the section. The ESR is also important because it determines the peak to peak output voltage ripple according to the approximate equation:

$$\Delta V_{OUT} \approx 2\Delta i_L R_{ESR}$$
 (in Volts)

A minimum value of $10\mu F$ is recommended and may be increased to a larger value. After choosing the output capacitor you can determine a pole-zero pair introduced into the control loop by the following equations:

$$f_{P1} = \frac{1}{2\pi (R_{ESR} + R_L)C_{OUT}}$$
 (in Hz)

$$f_{Z1} = \frac{1}{2\pi R_{ESR} C_{OUT}} \text{ (in Hz)}$$

Where R_L is the minimum load resistance corresponding to the maximum load current. The zero created by the ESR of the output capacitor is generally very high frequency if the ESR is small. If low ESR capacitors are used it can be neglected. If higher ESR capacitors are used see the \it{High} \it{Output} $\it{Capacitor}$ \it{ESR} $\it{Compensation}$ section. Some suitable capacitor vendors include Vishay, Taiyo-Yuden, and TDK.

RIGHT HALF PLANE ZERO

A current mode control boost regulator has an inherent right half plane zero (RHP zero). This zero has the effect of a zero in the gain plot, causing an imposed +20dB/decade on the rolloff, but has the effect of a pole in the phase, subtracting another 90° in the phase plot. This can cause undesirable effects if the control loop is influenced by this zero. To ensure the RHP zero does not cause instability issues, the control loop should be designed to have a bandwidth of less than $1/\!\!\!/_2$ the frequency of the RHP zero. This zero occurs at a frequency of:

RHPzero =
$$\frac{V_{OUT}(D')^2}{2\pi I_{IOAD}L}$$
 (in Hz)

where I_{LOAD} is the maximum load current.

SELECTING THE COMPENSATION COMPONENTS

The first step in selecting the compensation components $R_{\rm C}$ and $C_{\rm C}$ is to set a dominant low frequency pole in the control loop. Simply choose values for $R_{\rm C}$ and $C_{\rm C}$ within the ranges given in the *Introduction to Compensation* section to set this pole in the area of 10Hz to 500Hz. The frequency of the pole created is determined by the equation:

Operation (Continued)

$$f_{PC} = \frac{1}{2\pi(R_C + R_O)C_C}$$
 (in Hz)

where $R_{\rm O}$ is the output impedance of the error amplifier, approximately 900k Ω . Since $R_{\rm C}$ is generally much less than $R_{\rm O}$, it does not have much effect on the above equation and can be neglected until a value is chosen to set the zero $f_{\rm ZC}$ is created to cancel out the pole created by the output capacitor, $f_{\rm P1}$. The output capacitor pole will shift with different load currents as shown by the equation, so setting the zero is not exact. Determine the range of $f_{\rm P1}$ over the expected loads and then set the zero $f_{\rm ZC}$ to a point approximately in the middle. The frequency of this zero is determined by:

$$f_{ZC} = \frac{1}{2\pi C_C R_C} \text{ (in Hz)}$$

Now $R_{\rm C}$ can be chosen with the selected value for $C_{\rm C}$. Check to make sure that the pole $f_{\rm PC}$ is still in the 10Hz to 500Hz range, change each value slightly if needed to ensure both component values are in the recommended range.

HIGH OUTPUT CAPACITOR ESR COMPENSATION

When using an output capacitor with a high ESR value, or just to improve the overall phase margin of the control loop, another pole may be introduced to cancel the zero created by the ESR. This is accomplished by adding another capacitor, C_{C2} , directly from the compensation pin V_C to ground, in parallel with the series combination of R_C and C_C . The pole should be placed at the same frequency as f_{Z1} , the ESR zero. The equation for this pole follows:

$$f_{PC2} = \frac{1}{2\pi C_{C2}(R_C //R_O)}$$
 (in Hz)

To ensure this equation is valid, and that C_{C2} can be used without negatively impacting the effects of R_C and C_C , f_{PC2} must be greater than $10f_{ZC}$.

CHECKING THE DESIGN

With all the poles and zeros calculated the crossover frequency can be checked as described in the section *DC Gain* and *Open-loop Gain*. The compensation values can be

changed a little more to optimize performance if desired. This is best done in the lab on a bench, checking the load step response with different values until the ringing and overshoot on the output voltage at the edge of the load steps is minimal. This should produce a stable, high performance circuit. For improved transient response, higher values of $R_{\rm C}$ should be chosen. This will improve the overall bandwidth which makes the regulator respond more quickly to transients. If more detail is required, or the most optimum performance is desired, refer to a more in depth discussion of compensating current mode DC/DC switching regulators.

POWER DISSIPATION

The output power of the LM3224 is limited by its maximum power dissipation. The maximum power dissipation is determined by the formula

$$P_D = (T_{imax} - T_A)/\theta_{JA}$$

where T_{jmax} is the maximum speciafied junction temperature (125°C), T_A is the ambient temperature, and θ_{JA} is the thermal resistance of the package.

LAYOUT CONSIDERATIONS

The input bypass capacitor CIN, as shown in the typical operating circuit, must be placed close to the IC. This will reduce copper trace resistance which effects input voltage ripple of the IC. For additional input voltage filtering, a 100nF bypass capacitor can be placed in parallel with C_{IN}, close to the V_{IN} pin, to shunt any high frequency noise to ground. The output capacitor, C_{OUT}, should also be placed close to the IC. Any copper trace connections for the C_{OUT} capacitor can increase the series resistance, which directly effects output voltage ripple. The feedback network, resistors R_{FB1} and R_{FB2}, should be kept close to the FB pin, and away from the inductor, to minimize copper trace connections that can inject noise into the system. Trace connections made to the inductor and schottky diode should be minimized to reduce power dissipation and increase overall efficiency. For more detail on switching power supply layout considerations see Application Note AN-1149: Layout Guidelines for Switching Power Supplies.

Application Information

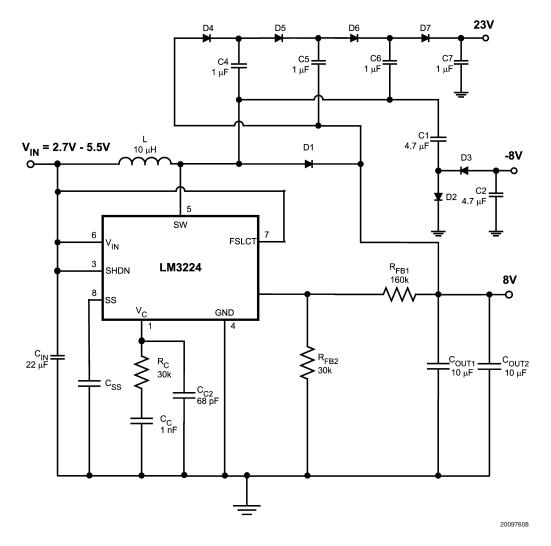


FIGURE 3. Triple Output TFT Bias (615 kHz operation)

TRIPLE OUTPUT TFT BIAS

The circuit in *Figure 3* shows how the LM3224 can be configured to provide outputs of 8V, –8V, and 23V, convenient for biasing TFT displays. The 8V output is regulated, while the –8V and 23V outputs are unregulated.

The 8V output is generated by a typical boost topology. The basic operation of the boost converter is described in the OPERATION section. The output voltage is set with $\rm R_{FB1}$ and $\rm R_{FB2}$ by:

$$R_{FB1} = R_{FB2} \frac{V_{OUT} - 1.26}{1.26} \Omega$$

The compensation network of $R_{\rm C}$ and $C_{\rm C}$ are chosen to optimally stabilize the converter. The inductor also affects the stability. When operating at 615 kHz, a 10uH inductor is recommended to insure the converter is stable at duty cycles greater than 50%. Refer to the COMPENSATION section for more information.

The -8V output is derived from a diode inverter. During the second cycle, when the transistor is open, D2 conducts and

C1 charges to 8V minus a diode drop (\approx 0.4V if using a Schottky). When the transistor opens in the first cycle, D3 conducts and C1's polarity is reversed with respect to the output at C2, producing -8V.

The 23V output is realized with a series of capacitor charge pumps. It consists of four stages: the first stage includes C4, D4, and the LM3224 switch; the second stage uses C5, D5, and D1; the third stage includes C6, D6, and the LM3224 switch; the final stage is C7 and D7. In the first stage, C4 charges to 8V when the LM3224 switch is closed, which causes D5 to conduct when the switch is open. In the second stage, the voltage across C5 is VC4 + VD1 - VD5 = VC4 \approx 8V when the switch is open. However, because C5 is referenced to the 8V output, the voltage at C5 is 16V when referenced to ground. In the third stage, the 16V at C5 appears across C6 when the switch is closed. When the switch opens, C6 is referenced to the 8V output minus a diode drop, which raises the voltage at C6 with respect to ground to about 24V. Hence, in the fourth stage, C7 is charged to 24V when the switch is open. From the first stage

voltage closer to 24 - 3xVDIODE (about 22.8V if a 0.4V forward drop is assumed).

to the last, there are three diode drops that make the output

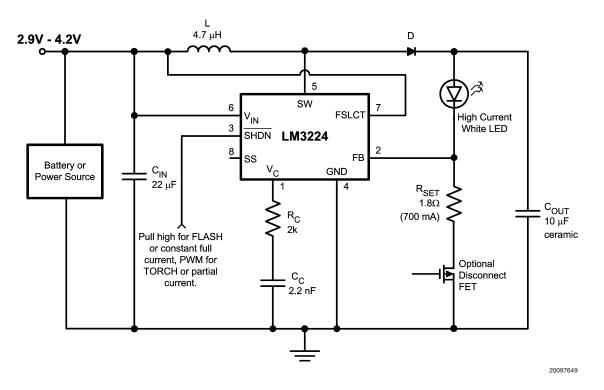


FIGURE 4. PWM White LED Flash/Torch Driver

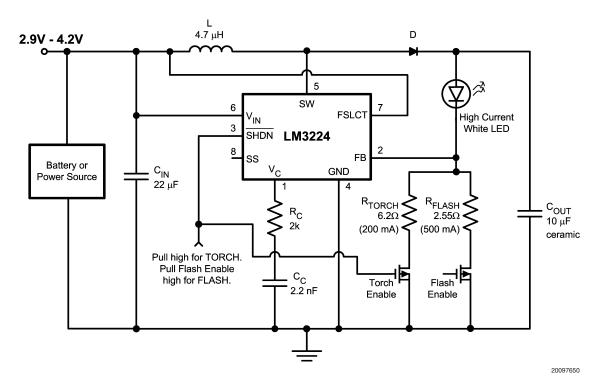


FIGURE 5. Continuously Operating White LED Flash/Torch Driver

The LM3224 can be configured to drive high current white LEDs for the flash and torch functions of a digital camera, camera phone, or any other similar light source. The flash/torch can be set up with the circuit in *Figure 4* by using the resistor $R_{\rm SET}$ to determine the amount of current that will flow through the LED using the equation:

$$I_{LED} = V_{FB}/R_{SET}$$

If the flash and torch modes will both be used the resistor $R_{\rm SET}$ can be chosen for the higher current flash value. To flash the circuit pull the $\overline{\rm SHDN}$ high for the time duration needed for the flash. To enable a lower current torch mode a PWM signal can be applied to the $\overline{\rm SHDN}$ pin. The torch current would then be approximately the percent ON time of the PWM signal multiplied by the flash (or maximum) current. The optional disconnect FET can be used to eliminate leakage current through the LEDs when the part is off and also to disconnect the LED when the input voltage exceeds the forward voltage drop of the LED. The maximum output current the LM3224 can supply in this configuration is shown in Table 1.

Figure 5 is another method of driving a high current white LED. This circuit has a higher component count but allows the switcher to remain on continuously for torch mode reducing stress on the supply. The two FETs also double for a disconnect function as described above. In this circuit the device and the torch enable FET are turned on setting a lower current through the LED. When flash is needed the

flash enable FET is turned on to increase the current for the amount of time desired. The minimum guaranteed maximum output current for this circuit is the same as for *Figure 4*.

TABLE 1. Maximum LED Drive current (F_{SW}=1.25MHz, L=4.7 μ H, LED V_{FMAX}=4V (V_{OUT}=5.26V)

V _{IN}	LED Drive Current (mA)	
4.2	1077	
4.1	1047	
4.0	1017	
3.9	987	
3.8	958	
3.7	929	
3.6	900	
3.5	871	
3.4	842	
3.3	814	
3.2	785	
3.1	757	
3.0	729	
2.9	701	
2.8	673	
2.7	646	

Some Recommended Inductors (Others May Be Used)

Manufacturer	Inductor	Contact Information
Coilcraft	DO3316 and DT3316 series	www.coilcraft.com
		800-3222645
TDK	SLF10145 series	www.component.tdk.com
		847-803-6100
Pulse	P0751 and P0762 series	www.pulseeng.com
Sumida	CDRH8D28 and CDRH8D43 series	www.sumida.com

Some Recommended Input And Output Capacitors (Others May Be Used)

Manufacturer	Capacitor	Contact Information	
Vishay Sprague	293D, 592D, and 595D series tantalum	www.vishay.com	
		407-324-4140	
Taiyo Yuden	High capacitance MLCC ceramic	www.t-yuden.com	
		408-573-4150	
Cornell Dubilier	ESRD seriec Polymer Aluminum Electrolytic	ununu ada aam	
	SPV and AFK series V-chip series	www.cde.com	
MuRata	High capacitance MLCC ceramic	www.murata.com	

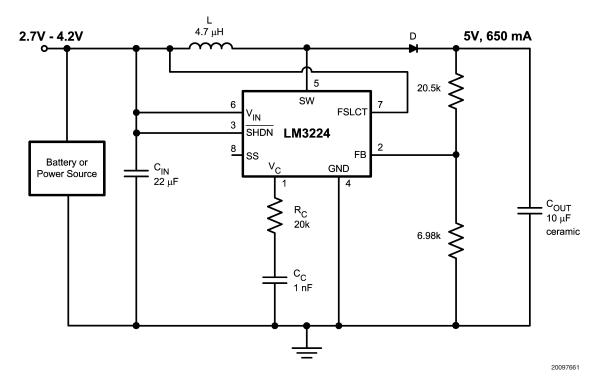


FIGURE 6. 1.25MHz, 5V Output

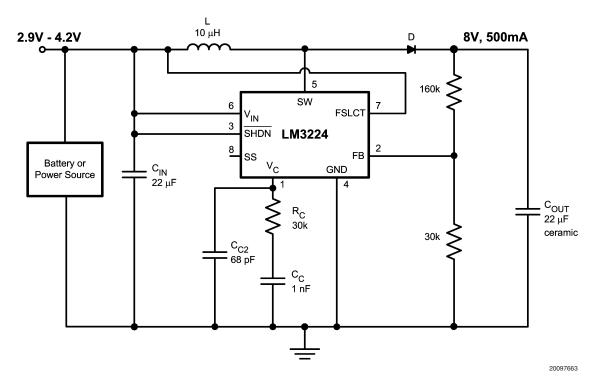


FIGURE 7. 1.25MHz, 8V Output

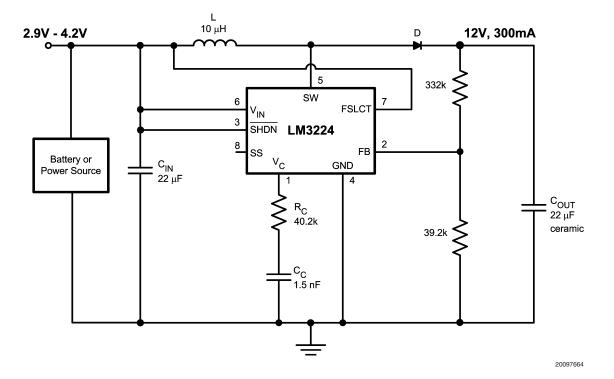


FIGURE 8. 1.25MHz, 12V Output

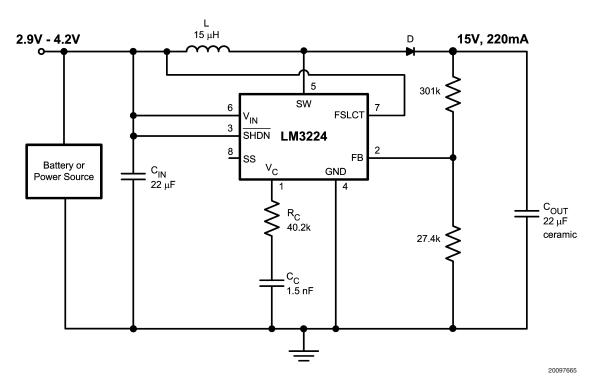


FIGURE 9. 1.25MHz, 15V Output

Physical Dimensions inches (millimeters) unless otherwise noted

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated