1M23Z02002 User's Manual Ver.1.12

RS303MR/RS304MD

Command Type Servo for Robot

Instruction Manual

Caution

- Read this instruction manual before use.
- Keep this manual handy for immediate reference.

For models

Futaba_®

1.	FOR SAFETY	4
	Warning Symbols	4
	Cautions for Use	4
	Warnings in Handling Batteries	5
	Cautions for Storage	5
2.	Introduction	6
	Components	6
	Features	7
	Small and Lightweight	7
	Interactive High-Speed TTL Communication	
	Servos for Both Command Type and PWM Type	
	Feedback (Only as Command Type)	
	• Compliance Control	
	• Calibration	
	Wiring from the Output Shaft	
	 Horn with a mark for reference position 	
	Part Names / Handling Instructions	
	Pin Assignment of the Connector	
	Communication Settings	
3.		
5.	Systems	
	System as Command-Type Servo	
	 Systems as PWM-Type Servo. 	
	Notes of Connection	
4.		
т.	Abstract	
	Switch of Command-Type and PWM-Type	
	 Communication Protocol (TTL Command-Type) 	
	 Control as PWM-Type Servo. 	
	 Memory Map. 	
	 Servo ID. 	
	 Serve 10 Packet 	
	Format of Packets	
	Short Packet	
	 Long Packet Deturn Decket 	
	Return Packet	
	Memory Map	
	4.1. Invariable ROM Area	
	No. O/No. 1 Model Number (2 Byte, Hex, Read)	. 23

23
24
25
25
25
26
26
27
27
27
28
28
28
30
31
31
32
32
33
34
35
36
37
38
40
40
41
42
43

5.

1. FOR SAFETY

To use this product safely, please pay your full attention to the followings.

Be sure to read this instruction manual prior to using this product.

Warning Symbols

The warning symbols used in this text are defined as follows:

Indication	Meanings
ADanger	Indicates a hazard that will cause severe personal injury, death,
	mulcates a nazaru that will cause severe personal mjury, death,
	or substantial property damage if the warning is ignored.
A	
W arning	Indicates a hazard that can cause severe personal injury, death, or substantial
	property damage if the warning is ignored.
	Indicates a hazard that will or can cause minor personal injury, or property
	damage if the warning is ignored
Symbols: V :Pr	ohibited : Mandatory

Cautions for Use

<u> C</u>aution

Do not disassemble or alter the servo. Otherwise, it may cause breakage in the gear box, fire on the servo or explosion of the battery.

Do not use any battery as a power supply other than the specified battery. The product is designed to be operated by Futaba's 9.6V Ni-MH battery only. Do not use any other batteries.

Do not touch the servo case during or some time after operating the servo. Otherwise, you may get burned on the finger as the motor or electronic circuit in the servo gets very hot.

Do not let the servo get covered with sandy dust or water.

Otherwise, the servo may stop moving or have a short circuit. The servo is not designed to be waterproof or dust-proof.

Do not use this product for any application other than indoor hobby-robots. Futaba is cleared of all responsibility to the results caused by the usage of this product for any application other than indoor hobby-robots.

 \bigcirc

Do not turn the servo horn forcibly.

Otherwise, the servo will be damaged.

 \bigcirc

Do not leave the servo locked.

If the servo continues to be locked due to a strong external force, it may cause smoke, fire or damage.

Warnings in Handling Batteries

🚺 Warning

Do not use any battery charger other than the specified charger. Otherwise, the battery may be get damaged, fire, smoke or liquid leakage. Be sure to use batteries recommended by Futaba.

Do not use battery packs connected in parallel. Connecting battery packs in parallel may cause abnormal heat generation or explosion due to the differences between charging voltages.

Do not disassemble or alter battery packs. Otherwise, it may cause fire, explosion or liquid leakage. And please be aware that such battery packs will be no longer guaranteed even if their warranties are not expired.

 \bigcirc

Do not use batteries if any abnormal symptoms are seen.

If you find any abnormal symptoms such as cracks in coating film, abnormal heat generation from batteries or deformation of batteries, never use the battery because it may cause serious consequences.

Cautions for Storage

Caution

Do not store the servos in the following conditions.

Places where the temperature is over 60° C or below -20° C.

Places where the Sun directly shines over the servos.

Places where it is very high in humidity.

Places where there is a strong vibration.

Places where there is a lot of dust.

Places where static electricity tends to be induced.

Places where infants can reach.

• Storing the servos in the places shown above may cause deformation and failure of the servos, or hazard.

2. Introduction

Components

The following parts are included in RS303MR and RS304MD.

 1) Servo(RS303MR or RS304MD) 2) Servo Horn 	x1 x1	
3) Screw to fix servo horn	x1	(RS303MR : M2x6) (RS304MD : M2x8 Tapping Screw)
*Servo Horn and Screw are attached to the	e servo.	
 4) Free Horn for RS30x 5) USAGE PRECAUTION 	x1 x1	

Please refer to p.43 "Optional parts" for optional parts and repair parts.

Features

RS303MR/RS304MD is especially designed for robotic applications, having the following features.

• Small and Lightweight

RS303MR/RS304MD is small and lightweight servos specially designed for robots, which are 21g and 28g respectively.

• Interactive High-Speed TTL Communication

TTL bi-directional communication of a maximum baud rate of 230kbps is possible and is used for the communication between the robot's processor and servos.

• Servos for Both Command Type and PWM Type

RS303MR/RS304MD can be controlled either as the Command Type Servo for robots or the PWM Type Servo for existing R/C servos. The type is automatically switched by the first signal sent after these products are connected.

• Feedback(Only as Command Type)

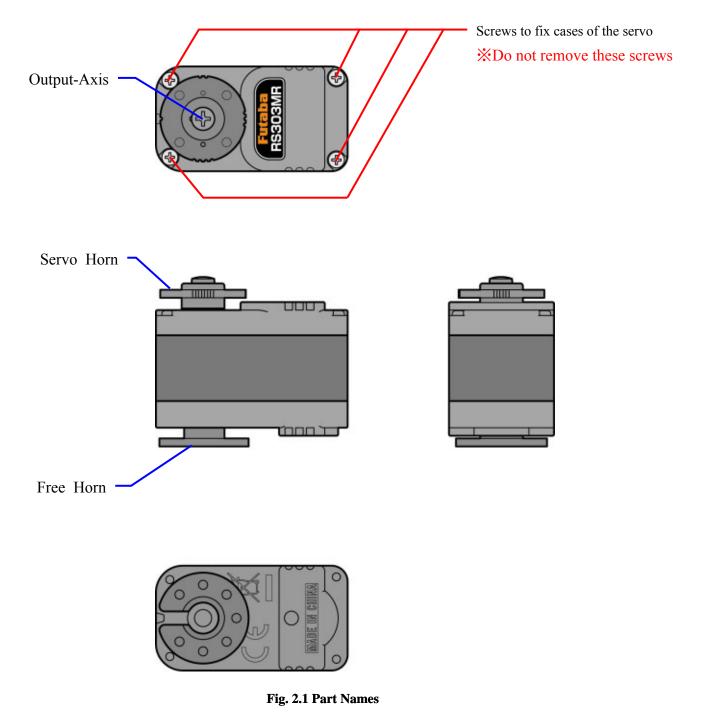
Information of sensors on the servo such as the position, load, temperature, electric current, and the alarm situation, etc. can be obtained via TTL communication.

• Compliance Control

With this feature, the movement of the RS303MR/RS304MD is controlled in accordance with the distance between the present and target positions. This enables the robot to move very smoothly without trembling its arms and legs and to absorb turbulence from external force.

Calibration

Angular position of every servo is calibrated by our standard gauge before their shipment. Even if another RS303MR/RS304MD servo is employed, it does not require any bothersome work for adjusting its angular position.


• Wiring from the Output Shaft

In order to avoid wires becoming entangled during operation, they are drawn out from the rear of the output shaft. Another shaft is installed on the bottom case to make the center impeller structure easy to construct.

• Horn with a mark for reference position

 \square marks are placed on the circumference of the servo horn in order to make sure the reference position even after being built in. (one \square for 0° position, two \square s for 90° position, three \square s for 180 position and four \square s for 270° position)_o

Part Names / Handling Instructions

Do not remove screws to fix cases of the servo. Removing the screws for fixing the servo with a case may damage the servo.

Pin Assignment of the Connector

The pin assignment of the connector of RS303MR/RS304 is shown in Fig. 2.2.

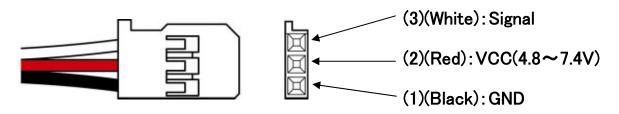


Fig. 2.2 Connector Pin Assignment

Communication Settings

Set your Communication parameters as follows:

Baud Rate	:	115.2	[kbps](9.6[kbps]~230.4[kbps],	refer p.25)
Data bit length	:	8	[bit]	
Parity	:	None		
Stop Bit	:	1	[bit]	
Flow Control	:	None		

3. Connections

Systems

Systems of the robot with RS303MR/RS304MD are follows.

• System as Command-Type Servo

System with Command-Type Servo is shown in Fig. 3.1.

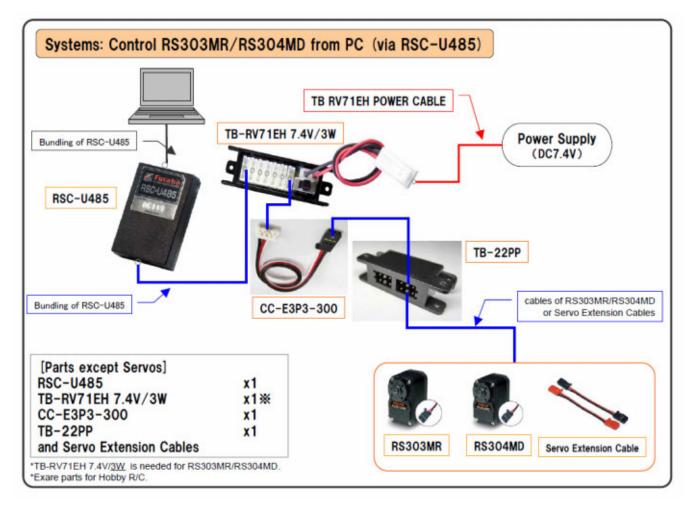


Fig. 3.1 System with Command-Type Servo

To Control RS303MR/RS304MD as Command-Type Servo with Processing Unit "RPU-10" or USB-RS485 Converter "RSC-U485", Power Hub "TB-RV71EH 7.4V/3W" is required somewhere in the system.

Maximum number of RS303MR/RS304MD to be connected as TTL Command-Type Servo is 24.

When these products are used together with RS485 Command-Type Servos, maximum number of the RS485 Command-Type Servo is 4.

Please note that when the Command-Type Servo are used together exceeding the maximum number, the servos may malfunction..

Systems as PWM-Type Servo

System with Command-Type Servo is shown in Fig. 3.2.

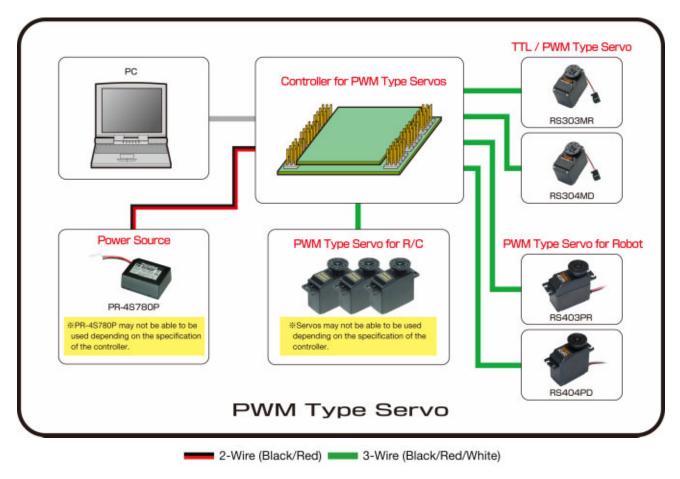


Fig. 3.2 System with PWM-Type Servo

Please note that the servos made by Futaba Corporation may malfunction, depending on the specification of the controller used for PWM servos. For details about the controller for

Notes of Connection

RS303MR/RS304MD may malfunction, depending on the system configuration if they are used as TTL Command Type Servo.

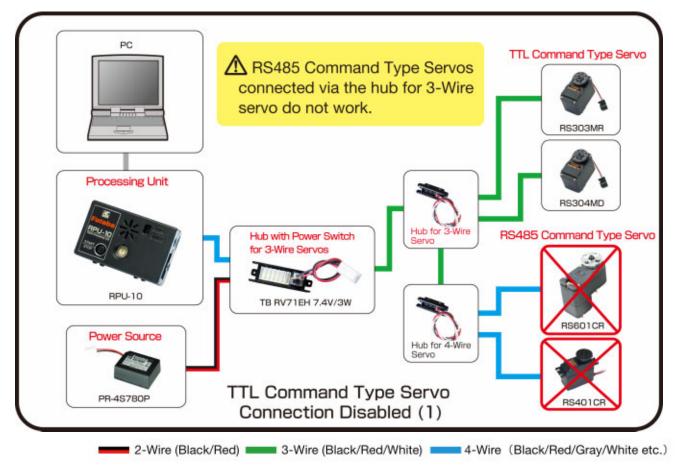


Fig. 3.3 TTL Command-Type Servo / Example of Disabled Connection (1)

RS485 Command Type Servos do not work if they are connected via the Hub for 3 Wire Servo. When both RS485 Command Type Servos and TTL Command Type Servos are used in the same system, it is required not to create any part where three wires are placed on the route to the RS485 Command Type Servos from a processing unit (or, USB-RS485 converter).

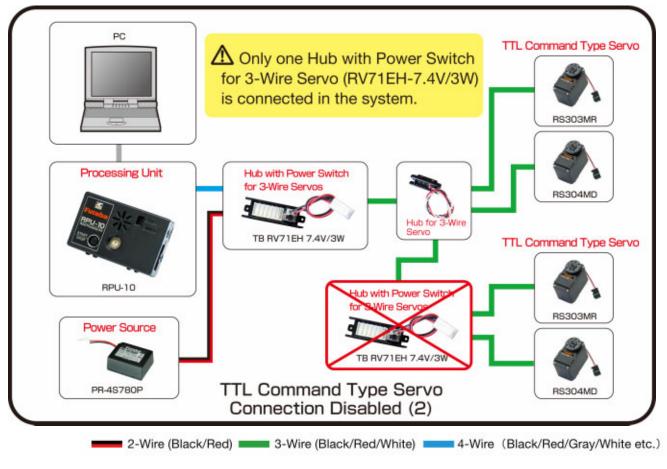


Fig. 3.4 TTL Command-Type Servo / Example of Disabled Connection (2)

The servos may malfunction if more than one Hub with Power Switch for TTL Command Type Servo (RV71EH-7.4V/3W) is connected in the same system.

4. Control

Abstract

• Switch of Command-Type and PWM-Type

RS303MR/RS304MD can be controlled either as the Command-Type Servo of PWM-Type Servo. Which Type will be applied is automatically decided by the first signal sent after the power is turned on. The Type once decided never changes until the power is turned off.

When RS303MR/RS304MD is controlled with a Robot Processing Unit "RPU-10", they are operated as Command Type Servo. When RS303MR/RS304MD is used by connecting to a radio control receiver or a controller for PWM-Type Servo, they are controlled as PWM-Type Servo.

Communication Protocol (TTL Command-Type)

The communication protocol used for TTL Command Type Servo is asynchronous half-duplex communication. The signal line can be switched alternately for transmission or reception of data. Normally, RS303MR and RS304MD stand by in a receiving mode. When they receive commands from RPU-10 to get the data of or the status of servos, the mode changes to a transmitting mode. After sending the data, they stand by again in a receiving mode.

• Control as PWM-Type Servo

To control RS303MR/RS304MD as a PWM-Type Servo, they are operated by changing the pulse width of the constant-frequency pulse (4ms-50ms). There is no direct relationship between the frequency, the torque, and the speed.

The relations between the pulse width and angles (positions) are as follows.

Pulse Width	Angle(degrees)
560 μ s	+144
1520 μ s	0
2480 µ s	-144

Table 4.1 Pulse Width and Angles

If there is no input for more than 80ms or an invalid value, less than 500µs or more than 2550µs, is input, the RS303MR and RS304MD will deactivate.(Refer p.27 No.22 Torque in Silence(1 Byte, Hex, Read/Write, for PWM)).

Memory Map

RS303MR/RS304MD has its own memory area to store data necessary for its movement. This memory area is called "Memory Map".

This memory map is divided into two groups. One is "RAM area" in which data will be erased when the power is turned off. The other one is "ROM area" in which data is held even after the power is turned off.

In "ROM area", there are three different types of parameters; parameters used only for Command Type, parameters used only for PWM Type and those used for both Types. When these parameters are required to be rewritten, even parameters used only for PWM Type Servo, it is required to transfer the data as a Command Type Servo after connecting the servos to the PC with USB-RS485 converter (RSC-U485) etc.

While the servos are operated as PWM Type Servo, rewriting the parameters cannot be executed. Therefore, the servos are operated with the prewritten parameters.

• Servo ID

You can set "ID" numbers to RS303MR/RS304MD servos individually. "ID" is used to identify servos during communication.

The default number of every servo is set to "1".

When you use plural servos in a single communication network, give them different "ID" numbers.

Packet

"Packet" is a block that is used for sending a command to or receiving data from RS303MR/RS304MD servos. Packets are divided into the following three groups, having different formats.

Short Packet

Short Packets are used for sending the data in the memory map toward a single servo.

Long Packet

Long Packets are used for sending the data in the memory map toward multiple servos simultaneously.

Return Packet

Return Packet is a packet that is sent from a servo when a return packet is requested.

Format of Packets

Short Packet

Short Packet is used for sending the data in the memory map to a single servo.

Structure

Header

This is a line head of a packet. Set "FA AF" for short packets.

ID

Set "ID" of the servo to be sent the packet.

By setting "FF" (=255), commands are commonly effective to all servos,

Flag

"Flag" shows reaction of the servo such as sending Return Packet or write ROM Area and so on. For details, refer subsequent pages.

Address

Set the starting address of Memory Map to be changed.

Length

"Length" is the length of the data. Set the number of bytes of "Data".

Count

"Count" is the number of servos to be sent "Data". Set "1" for a short packet.

Data

"Data" to be written in the memory map of the servo.

Sum

"Sum" is the value obtained from XOR operation on all bytes from ID through Data in a packet by a unit of a byte.

Ex.)"Sum" of following packet is "1C".

He	dr	ID	Flg	Adr	Len	Cnt	Dat	Sum			
FA /	٩F	01	00	1E	02	01	00 00	1C			
01H	XO	r O ()H X	OR 1E	H XO	R 02H	[XOR	01H XOR	00H	XOR	00H = 1C

Details of Flag

Each bit has the following meaning.

Bit	Function	
7	(Reserved)	
6	Write Flash ROM	
5	Reboot Servo	
4	Initialize memory map data	
3	Direct Address of Return Packet	
2	Direct Address of Return Packet	
1	Direct Address of Return Packet	
0	Direct Address of Return Packet	

Table 4.2 bit of Flag

Bit 7 : Reserved

Set "0" to this bit always.

Bit 6 : Write Flash ROM

By setting this bit to "1" (Flags=40H) and sending a packet of address = FFH, Length = 00H, Count = 00H to a servo, data of the memory map from No.4 to No.29 is written in Flash ROM.

ex)Write Flash ROM of the servo (ID:01)

Hdr	ID	Flg	Flg Adr		Cnt	Sum
FA AF	01	40	FF	00	00	BE

The servo's memory should be renewed with the data you want to write into the Flash ROM by transferring the data beforehand.

The servo ID becomes effective only after receiving a packet. The ID returns to the previous number on the next boot up unless the ID is written into the Flash ROM.

Never turn off the power while the Flash ROM is being written.

Bit 5 : Reboot Servo

Setting this bit to "1" (Flags=20H), and sending a packet with Address = FFH, Length = 00H, Count = 00H to a servo will reboot a servo.

Ex)Reboot servo(ID:01)HdrIDFlgAdrLenCntSumFA AFO120FFO0O0DE

The packet that "Write Flash ROM" and "Reboot Servo" has to be sent separately.

"Reboot Servo" packet must be sent after finishing "Write Flash ROM".

Bit 4 : Initialize the memory map from No.4 to No.29

Setting this bit to "1" (Flags=10H), and sending a packet with Address = FFH, Length = 00H, Count = 00H and data = FFH to a servo will initialize the memory map from No.4 to No.29 to their default value. Please refer to default value in the "Memory Map of ROM Area" (p.24) for more details.

Ex)Initialize the memory map of the servo (ID:01)

Hdr	ID	Flg	Adr	Len	Cnt	Sum
FA AF	01	10	FF	FF	00	11

ACaution

After initializing the servo, "ID" of the servo becomes "1".

Bit 3~0 : Direct Address of Return Packet

(1) Direct Area of Memory Map

Setting Bit 3 to Bit 0 of a Short Packet as **Table 4.3**, you can receive return data of the specified area of servo's memory map.

The RS485 half duplex communication does not allow addressing more than one servo that can send a return packet. After requesting a return packet, do not send next data until completing receiving of the return packet.

Bit	3	2	1	0	Function
	0	0	0	0	No return Packet
	0	0	0	1	Return ACK/NACK Packet
	0	0	1	1	Return the data of memory map No.00 \sim No.29
	0	1	0	1	Return the data of memory map No.30 \sim No.59
	0	1	1	1	Return the data of memory map No.20 \sim No.29
	1	0	0	1	Return the data of memory map No.42 \sim No.59
	1	0	1	1	Return the data of memory map No.30 \sim No.41
	1	1	1	1	Return the specified number of bytes of data starting from
					the specified address

Table 4.3 Direct Area of memory map

(2) Direct specified address

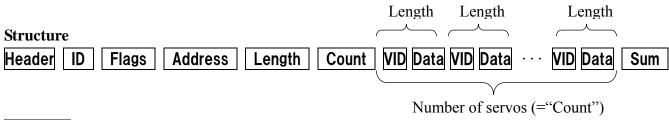
Setting the Bit 3 to Bit 0 to "1" and sending a short command with the starting address whose data you want to receive, the length of data and the count=00H makes it possible to return the specified number of bytes of the data starting from the specified address.

Available addresses in the memory map are from No.00 to No.139 (00H~8BH).

Ex)Return the data of addresses from No.42 (2AH) through No.43 (2BH) of the servo(ID:1).

Hdr	ID	Flg	Adr	Len	Cnt	Sum
FA AF	01	OF	2 A	02	00	26

(3) ACK/NACK Packet


By sending a Short Packet with the Bit 0=1, Bit1=0, Bit2=0, Bit3=0, the servo will return ACK/NACK packet.

ACK/NACK Packet is only 1 byte of data that is **07H** = "ACK" or **08H** = "NACK".

• Long Packet

"Long Packet" is used to send the data to multiple servos.

("Address" and "Length" are the same to all servos.)

Header

This notation indicates the front of a packet. Set "FAAF" for Long Packet.

ID

Set "0" for Long Packet always.

Flags

Set "0" for Long Packet always.

Address

Set the starting address of Memory Map to be changed.

Length

"Length" is the length of the data for each servos.

Length = the number of bytes of the data for each servos + 1(byte of VID)

Count

"Count" is the number of servos to be sent "Data".

VID

"VID" is the ID of each servo

Data

"Data" to be written in the memory map of each servo.

Sum

"Sum" is the value obtained from XOR operation on all bytes from ID through Data in a packet by a unit of a byte.

Ex)Set angle to 10 degrees to the Servos (ID:1 and ID:2) and 50 degrees to the servo (ID:5).

Hdr	ID	Flg			0110		Dat		Dat	VID	Dat	Sum
FA AF	00	00	1E	03	03	01	64 00	02	64 00	05	F4 01	ED

The check sum of the send data above is:

00H	XOR	00H	XOR	1EH	XOR	03H	XOR	03H	XOR	01H	XOR	64H	XOR	00H XOR
02H	XOR	64H	XOR	00H	XOR	05H	XOR	F4H	XOR	01H	= ED			

Return Packet

"Return Packet" is the packet returned from the servo when the Flag field requests a servo to send a return packet.

Structure

Header ID Flags Address	Length Count Data Sum
-------------------------	-----------------------

Header

This notation indicates the front of a packet. "FD DF" is set to Return Packet.

ID

This is the "ID" of the servo that sent Return Packet.

Flags

"Flags" of the Return Packet shows conditions of the servo.

Table 4.4 Flags of Return Packet

Bit	Value	Meanings	
7	0: Normal / 1: Error	Temperature Limit (Torque OFF)	
6	0	(Reserved)	
5	0: Normal / 1: Error	Temperature Alarm	
4	0	(Reserved)	
3	0: Normal / 1: Error	Write Flash ROM Error	
2	0	(Reserved)	
1	0: Normal / 1: Error	Received Packet Error	
0	0	(Reserved)	

Address

"Address" shows starting address of the data of return packet.

Length

"Length" shows the number of bytes of "Data".

Count

"Count" Shows the number of servos. It is set to "1" for Return Packet.

Sum

"Sum" shows check sum of the Return Packet, and its value is the XOR from "ID" to the end of "Data" in byte units.

Memory Map

4.1. Invariable ROM Area

Area	Address DEC HEX		Initial	Name	R/W
	00	00H	30H(40H)	Model Number L	R
Invariable	01	01H	30H	Model Number H	R
Invariable	02	02H	03H	Firmware Version	R
	03	03H		Reserved	-

Table 4.5Invariable ROM Area

(*) for RS304MD

• No.0/No.1 Model Number(2 Byte, Hex, Read)

It is the Model Number (Name of the servo).

"30 30" means RS"303"MR, and "30 40" means RS"304"MD

	RS303MR	RS304MD	
Model_Number L	30H	40H	
Model_Number H	30H	30H	

• No.2 Firmware Version(1Byte, Hex, Read)

It is the version of the servo's firmware.

Its value is depending on the version at production (0x03 in the example below). Firmware Version = 0.3 H

Firmware Version = 03H

XSaving 2-Byte data

Two-byte data is stored to the memory map in two individual 8-bit bytes of H (High byte) and L (Low byte).

Ex) Set Angle to 29.2 degrees to servo (ID:23) Target angle is stored in "Goal Position" (Address 30/31) with unit of 0.1 degrees. (29.2 [degrees] = 292 [0.1degrees, DEC] = 0124[0.1degrees, HEX]) Stored data is bellow:

Goal Position (L)	= 24H
Goal Position (H)	= 01H

4.2. Variable ROM Area

A	Addres	S	T.::4:-1	News	D/117
Area	DEC	HEX	Initial	Name	R/W
	04	04H	01H	Servo ID	RW
	05	05H	00H	Reverse	RW
	06	06H	07H	Baud Rate	RW
	07	07H	00H	Return Delay	RW
	08	08H	DCH	CW Angle Limit L	RW
	09	09H	05H	CW Angle Limit H	RW
	10	0AH	24H	CCW Angle Limit L	RW
	11	0BH	FAH	CCW Angle Limit H	RW
	12	0CH	00H	Reserved	-
	13	0DH	00H	Reserved	-
	14	0EH	4DH	Temperature Limit L	R
	15	0FH	00H	Temperature Limit H	R
Variable	16	10H	00H	Reserved	-
ROM	17	11H	00H	Reserved	-
	18	12H	00H	Reserved	-
	19	13H	00H	Reserved	-
	20	14H	00H	Reserved	-
	21	15H	00H	Reserved	-
	22	16H	00H	Torque in Silence	RW
	23	17H	C8H	Warm-up Time	RW
	24	18H	02H	CW Compliance Margin	RW
	25	19H	02H	CCW Compliance Margin	RW
	26	1AH	08H	CW Compliance Slope	RW
	27	1BH	08H	CCW Compliance Slope	RW
	28	1CH	64H(58H)	Punch L	RW
	29	1DH	00H(02H)	Punch H	RW

Table 4.6Variable ROM Area

(*) for RS304MD

*C: Effective only for Command-Type Control *P: Effective only for PWM-Type Control

• No.4 Servo ID (1Byte, Hex, Read/Write)

It is the "ID" of the servo.

Its Initial value is 01H and the settable range is from 1 to 127 (01H to 7FH).

Ex) Set ID to "5" to the servo (ID:1).

		Flg					
FA AF	01	00	04	01	01	05	00

The servo begins to operate under the new ID as soon as the ID rewrite packet is received. Note that the ID returns to previous ID if it was not written to the Flash ROM before turning off the power.

• No.5 Servo Reverse(1Byte, Hex, Read/Write)

It is the direction of rotation of the servo.

Its initial value is 00H that means the normal rotation, and the value of 01H means reverse rotation. If it is set to 01H (reverse rotation), the Angle Limit is also reversed.

Ex) Reverse the servo (ID:1):

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	05	01	01	01	05

• No.6 Baud Rate(1Byte, Hex, Read/Write)

It is the baud-rate of communication.

Initial value is 07H (115,200bps) and the settable range is from 0 to 9 (00H to 09H)

The values and baud rate is assigned as shown in **Table 4.7**.

Table 4.7 Baud Rate

Value	Baud Rate	Value	Baud Rate
00H	9,600bps	05H	57,600bps
01H	14,400bps	06H	76,800bps
02H	19,200bps	07H	115,200bps
03H	28,800bps	08H	153,600bps
04H	38,400bps	09H	230,400bps

Even after the value is rewritten, the servos are operated at the previous baud rate. In order to operate under the new baud rate, it is required to write Flash ROM and Reboot Servo. Ex) Set baud rate as 38,400 bps to the servo (ID:1)

	ID	•					
FA AF	01	00	06	01	01	04	03

After sending above packet, "Write Flash ROM" packet and "Reboot Servo" packet must be sent.

• No.7 Return Delay(1Byte, Hex, Read/Write)

It is the delay time for reply when the Return Packet is required.

The servo sends the return packet in 100µs after receiving data with the setting of 0.

The parameters of No.7 are in units of $001H = 50\mu s$.

If you want to set the delay time for reply to 1ms, write 18 (12H). (1ms=100µs+18x50µs)

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	60	07	01	01	12	74

• No.8/No.9/No.10/No.11 Angle Limit (2 Byte, Hex, Read/Write)

It is the maximum operating angle based on 0 degree (units: 0.1 degree).

No.8 and No.9 are used for CW (clockwise) direction and No.10 and No.11 are for CCW (counterclockwise) direction.

When the set angle is larger than the set Angle Limit, the servo rotates to the maximum operating angle. Initial value and settable range is;

Direction	Initial	range	
CW	+150(05DCH)	$0 (0000 \text{H}) \sim +150 (05 \text{DCH})$	
CCW	-150(FA24H)	0 (0000H) \sim -150 (FA24H)	

Ex. 1) Set the CW Angle Limit of servo (ID: 1) to 100.0 degrees.

Since the angle is set in 0.1 degree units, 100.0 degrees = 1000(03E8H) is set.

CW Angle Limit L = E8H, CW Angle Limit H = 03H

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	08	02	01	E8 03	E1

Ex. 2) Set the CCW Angle Limit of servo (ID: 1) to -100.0 degrees.

-100.0 degrees = -1000(FC18H).

CCW Angle Limit L = 18H, CCW Angle Limit H = FCH

Hdr	١D	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	10	02	01	18 FC	F6

• No.14/ No.15 Temperature Limit(2 Byte, Hex, Read)

It is the limit value of the internal temperature of the servo.

When the internal temperature is increased by the heat of the motor, etc. and exceeds the set value, the servo will automatically turns off its torque to avoid troubles.

To turn on the torque again, cool the servo and reboot it.

*Note that rewriting this value will null and void the product warranty.

• No.22 Torque in Silence(1 Byte, Hex, Read/Write, for PWM)

It is the condition of the servo's output torque.

When there is no input for more than 80ms or continuous invalid input that the pulse width is less than 0.5ms or more than 2.55ms, the servos' torque condition changes to the specified condition.

The initial value is 0(00H) and the relationship between the set value and the condition is shown as below;

Table 4.8 Torque Conditions

Value	Condition
0(00H)	Torque OFF
1(01H)	Torque ON and keep the same angle*
2(02H)	Brake mode (refer p.32)

*The servo continues maintain the angle directed just before the losing input or invalid input is started.

• No.23 Preparation Time (1 Byte, Hex, Read/Write, for PWM)

It is the time of the first movement after the power is turned on.

Setting this parameter enables the servo to avoid moving suddenly just after turning on the power.

Its unit is 10ms and the settable range is 0~255 (00H~FFH). The Initial value is 200(C8H).

• No.24 / No.25 Compliance Margin (1 Byte, Hex, Read/Write)

It is the allowable range of the angle around the goal angle.

If the error between the present angle and the goal position is in the set range, the servo recognized itself to be in the goal position and stop moving.

No.24 is for CW and No.25 is for CCW.

The unit is 0.1 degree, initial value is 2(02H) and the settable range is $0\sim255(00H\sim FFH)$ for both directions.

• No.26 / No.27 Compliance Slope (1 Byte, Hex Read/Write)

It is the range that output torque of the servo increases in proportion to the error between the present angle and aim angle. The flexibility of the servo increases in proportion to this value.

No.26 is for CW and No.27 is for CCW.

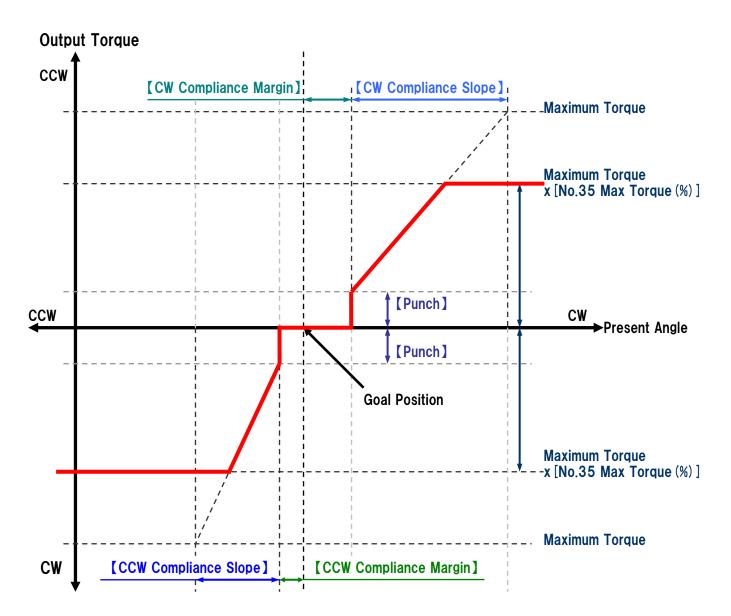
The unit is 1.0 degree, initial value is 8(08H) and the settable range is $0\sim255(00H\sim FFH)$ for each directions.

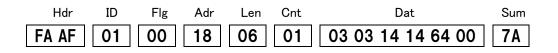
• No.28 / No.29 Punch (2 Byte, Hex, Read/Write)

It is the minimum torque (electric current) that is generated when present angle of the servo exceeds the range of Compliance Margin.

The unit is 0.01% of the maximum torque and the settable range is $0\sim10,000(00H\sim2710H)$ The initial value for RS303MR is 0064H (1.0%) and for RS304MD is 0258H (6.0%).

The relationship of the output torque, error (=between the present angle and the goal position) and compliance parameters are shown in **Fig. 4.1**.




Fig. 4.1 The relationship of Output Torque, Angle and Compliance settings.

Ex.1) Set Punch of the servo (ID: 1) to 1[%](=100(0064H)).

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	1C	02	01	64 00	7A

Ex.2) Set the servo (ID: 1) as shown below;

CW Compliance Margin	=	03H
CCW Compliance Margin	=	03H
CW Compliance Slope	=	14H
CCW Compliance Slope	=	14H
Punch	=	0064H

Area	Address	5	Initial	Name	R/W
Alta	DEC	HEX	mmai	Name	IX/ W
	30	1EH	00H	Goal Position L	RW
	31	1FH	00H	Goal Position H	RW
	32	20H	00H	Goal Time L	RW
	33	21H	00H	Goal Time H	RW
	34	22H	00H	Reserved	-
	35	23H	64H	Max Torque	RW
	36	24H	00H	Torque Enable	RW
	37	25H	00H	Reserved	-
	38	26H	00H	Reserved	-
	39	27H	00H	Reserved	-
	40	28H	00H	Reserved	-
	41	29H	00H	Reserved	-
	42	2AH	00H	Present Position L	R
T 7 · 1 1	43	2BH	00H	Present Position H	R
Variable RAM	44	2CH	00H	Present Time L	R
Area	45	2DH	00H	Present Time H	R
Alca	46	2EH	00H	Present Speed L	R
	47	2FH	00H	Present Speed H	R
	48	30H	00H	Present Current L	R
	49	31H	00H	Present Current H	R
	50	32H	00H	Present Temperature L	R
	51	33H	00H	Present Temperature H	R
	52	34H	00H	Present Volts L	R
	53	35H	00H	Present Volts H	R
	54	36H	00H	Reserved	-
	55	37H	00H	Reserved	-
	56	38H	00H	Reserved	-
	57	39H	00H	Reserved	-
	58	3AH		Reserved	-
	59	3BH		Reserved	-

 Table 4.9
 Variable RAM Area of the Memory Map of RS303MR/RS304MD

• No.30 / No.31 Goal Position (2 Byte, Hex, Read/Write)

This parameter is the target angle of the servo.

Center of the movable range is 0 degrees and CW direction is "+" and CCW direction is "-" from the top of the servo (nameplate side). Unit of Goal Position is 0.1 degree and its settable range is -1500~+1500.

+" and 500. -150° +150

 0°

If the set value is out of the range specified by the No.8~No.11 ("Angle Limit"), the servo moves to the set maximum or minimum angle.

When No.36 "Torque Enable" is set from 0 (Torque OFF) to 1 (Torque ON),

"Goal Position" is automatically rewrite to the value of Present Position.

When a packet that direct Torque ON and set Goal Position in 1 packet (packet to write No.30~36 at once) is received, the servo turns on its torque but not moves.

Ex.1) Move servo (ID: 1) to 90.0 degree.

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	1E	02	01	84 03	9B

Ex.2) Move servo (ID: 1) to -90.0 degree

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	1E	02	01	7C FC	9C

• No.32 / No.33 Goal Time (2 Byte, Hex, Read/Write)

This parameter is the time to move to "Goal Position".

The unit is 10ms and the settable range is $0\sim16,383(3FFFH)$, but note that error occurs about up to 5% when the set value is too big.

In the case that the speed required by "Goal Position" and "Goal Time" is faster than the maximum speed of the servo, the servo moves with its maximum speed.

Ex.1) Move the servo (ID: 1) to 90.0 degree in 5 sec.

90.0 degree = 900(0384H), 5 sec = 500(01F4H)

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	1E	04	01	84 03 F4 01	68

Ex.2) Move the servo (ID: 1) to -120.0 degree in 10 sec.

-120.0 degree = -12000(FB50H), 10 sec = 1000(03E8H)										
Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum			
FA AF	01	00	1E	04	01	50 FB E8 03	5A			

• No.35 Maximum Torque (1 Byte, Hex, Read/Write)

This parameter set the maximum torque of the servo.

In PWM-Type Control, the servo always moves with initial value (100%) regardless of set value.

The unit is 1 % with the torque described in this manual (p.39) as 100%. The initial value is 100(64H) and the settable range is $0\sim100(00H\sim64H)$

Ex) Set Maximum Torque of the servo (ID: 1) to 80%(=50H).

Hdr		0				Dat	
FA AF	01	00	23	01	01	50	72

No.36 Torque Enable (1 Byte, Hex, Read/Write)

It is the condition of the servo's torque.

The relationship of the value and the condition is shown as below;

Value	Condition
0(00H)	Disable (Torque OFF)
1(01H)	Enable (Torque ON)
2(02H)	Brake mode

The initial value is 0(00H) when the power is turned on.

In "Brake mode", the servo does not have output torque, but weak resistance torque occurs when it is turned from the outside.

Ex.1) Turn on the torque of the servo (ID: 1).

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	24	01	01	01	24

Ex.2) Turn off the torque of the servo (ID: 1)

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	24	01	01	00	25

Ex.3) Set the servo (ID: 1) to "Brake mode"

Hdr	ID	Flg	Adr	Len	Cnt	Dat	Sum
FA AF	01	00	24	01	01	02	27

• No.42 / No.43 Present Position (2 Byte, Hex, Read)

It is the angle of the servo.

Center of the movable range is 0 degrees and CW direction is "+" and CCW direction is "-" from the top of the servo (nameplate side). Unit of Goal Position is 0.1 degree and its range is -1500~+1500.

Ex) Get "Present Position" of the servo (ID: 1)

To get the value of "Present Position"(No.42 and No.43 of the Memory Map) as a Return Packet, a Short Packet ("Flag":bit3=1, bit2=0, bit1=0, bit0=1,"Address"=0, "Length"=0, "Count"=1 and no "Data") is required to be sent.

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is;

Hdr	ID	Flg	Adr	Len	Cnt	Sum
FA AF	01	09	00	00	01	09

An example of Return Packet is;

	Data		
Hdr ID Flg Adr Len Cnt	42 43 ····	••• 58 59	Sum
FD DF 01 00 2A 12 01	84 03 00 00 00 00 06 00	$\cdots 00 \ 00 \ 00 \ 00 \ 00 \ 00$	B9

2 Byte from the top of "Data" is "Present Position" (No.42 and No.43 of Memory Map), then "Present Position" is 0384H=900= 90.0degrees.

• No.44/No.45 Present Time (2 Byte, Hex., Read)

It is an elapsed time after a servo receives a packet to move.

When movement is completed, it maintains the last value.

If the "Goal Time" of the movement is "0(00H)", "Present Time" will not be rewritten (maintain last value).

Ex) Get "Present Time" of the servo (ID: 1)

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is the same as the previous paragraph.

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is;

Hdr	ID	Flg	Adr	Len	Cnt	Sum
FA AF	01	09	00	00	01	09

An example of Return Packet is;

Data															
Hdr	ID	Flg	Adr Len Cnt	42	43	44	45 •••						58	59	Sum
FD DF	01 0)0	2A 12 01	5C	FF (37 (02 00	00 07	00	• • •	00 00	00 00	00	00	A9

The 3rd and 4th Byte of the "Data" is "Present Time" (No.44 and No.45 of Memory Map), then "Present Time" is 0237H=567=5670msec.

• No.46/No.47 Present Speed (2 Byte, Hex, Read)

It is the rotational speed and its unit is deg/sec.

Ex) Get "Present Speed" of the servo (ID: 1)

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is the same as the previous paragraphs.

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is;

	ID	0				
FA AF	01	09	00	00	01	09

An example of Return Packet is;

				Data	а									
Hdr	ID	Flg	Adr Len Cnt	42	43 44	45	46	47 •••				58	59	Sum
FD DF	01	00	2A 12 01	5C	FF 37	02	2C	<mark>01</mark> 07	00	• • •	00 00 00 00	00	00	84

2 Byte as No.46 and No.47 of "Data" is the "Present Speed", then "Present Speed" is 012CH=300 deg/sec.

• No.48/No.49 Present Current (2 Byte, Hex, Read)

It is the electric current of the servo and its unit is 1mA.

It is almost proportional to output torque, but does not become 0 even in the condition of Torque-OFF.

Ex) Get "Present Current" of the servo (ID: 1)

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is the same as the previous paragraphs.

A Short Packet to require Return Packet with Memory Map No.42 ~ No.49 is;

	ID	0					
FA AF	01	09	00	00	01	09	

An example of Return Packet is;

				Dat	ta																
Hdr	ID	Flg	Adr Len Cnt	42	43			48	49	• • •								• • •	58	59	Sum
FD DF	01	00	2A 12 01	4E	FB (00 00	00	06	00	00	BA	03	00	00	00	00	00	00	00	00	32

2 Byte as No.48 and No.49 of "Data" is the "Present Current", then "Present Current" is 0006H=6mA. *The value of "Data" varies according to the conditions of the real servo.

• No.50/No.51 Present Temperature (2 Byte, Hex, Read)

It is the temperature of the board in the servo.

The sensor has individual difference about up to ± 3 degrees Celsius.

When "Present Temperature" reaches low temperature 10 degrees Celsius than a "Temperature Limit" (No.14 and No.15 of Memory Map), "Temperature Alarm" (Bit 5 of Flag of Return Packet) becomes "1".

When "Present Temperature" Exceeds "Temperature Limit", "Temperature Limit" (Bit 7 of Flag of Return Packet) becomes "1" and the servo will be "Brake mode"(No.36 of Memory Map becomes to "2") automatically.

The temperature reaches "Temperature Limit" once, the servo will not accept Torque-ON command until it is rebooted or is turned off-and-on the power again.

When "Present Temperature" reaches "Temperature Limits", temperature around the motor of the servo reaches to 120~140 degrees Celsius. Please be careful about burns and use the servo after the temperature fell enough.

Ex) Get "Present Temperature" of the servo (ID: 1)

A Short Packet to require Return Packet with Memory Map from No.42 and No.59 is;

Hdr	ID	Flg	Adr	Len	Cnt	Sum
FA AF	01	09	00	00	01	09

An example of Return Packet is;

				Data	a										
Hdr	ID	Flg	Adr Len Cnt	42	43	• • •			50	51	• • •		58	59	Sum
FD DF	01	00	2A 12 01	4E	FB	00 (0 00 00	06 00	2D	00	00 0	00 00 00 00 00	00	00	A6

2 Byte as No.50 and No.51 of "Data" is the "Present Temperature", then the value is 002DH=45degrees Celsius.

• No.52/No.53 Present Voltage (2 Byte, Hex, Read)

It is the voltage of the power applied to the servo and its unit is 10mV. The sensor has individual difference about up to ± 0.3 V.

Ex) Get "Present Voltage" of the servo (ID: 1)

A Short Packet to require Return Packet with Memory Map from No.42 and No.59 is;

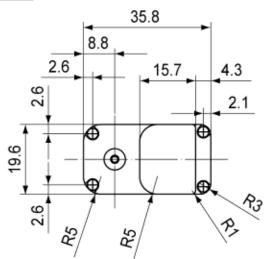
Hdr	ID	Flg	Adr	Len	Cnt	Sum
FA AF	01	09	00	00	01	09

An example of Return Packet is;

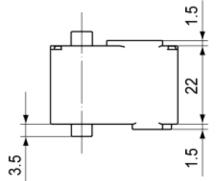
 Data

 Hdr
 ID
 Flg
 Adr Len Cnt
 42
 43
 ···
 52
 53
 ···
 58
 59
 Sum

 FD DF
 O1
 O0
 2A
 12
 O1
 4E
 FB
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 A6


2 Byte as No.52 and No.53 of "Data" is the "Present Voltage", then the value is 02E4H=7.4V.

5. References


		S	pecs						
Application		Actuators for R	lobots						
Dimensions		35.8 x 19.6 x 2	5.0 [mm]						
		*Refer next pag	ge for mo	ore detai	ls.				
Weight		RS303MR	28	[g]					
		RS304MD	21	[g]					
Consumption Current		(in suspension)	16	[mA]					
(Room Temperature, No	Load)	(in operation)	90	[mA]	[mA]				
Maximum Output Torqu	e	RS303MR	6.5	[kgf·	[kgf·cm]				
(at 7.4V)	RS304MD	5.0	[kgf·	[kgf·cm]					
Maximum Speed		RS303MR	0.11						
(at 7.4V, No Load)		RS304MD	0.16	[sec/6	0degree]				
Direction	CW	Present Position	n < Goal	Position	ı				
	CCW	Present Position	n > Goal	Position	ı				
Angle Range	CW	150[degree] (C	ommand	-Type) /	144 [deg	ree] (PWM-Type)			
	CCW	150[degree] (C	ommand	-Type) /	144 [deg	ree] (PWM-Type)			
Supply Voltage		4.8 ~	7.4	[V]					
Temperature Range		(to operate)	0	2	+40	[degrees Celsius]			
		(to store)	-20	~	+60	[degrees Celsius]			
Power Source	Lithiun	n Polymer Batter	y (2 cells	5)					
Communication	Baud R	ate: Maxin	num 230	.4 kbps					
	Protoco	ol: 8bit, S	top bit 1	, None P	arity, Asy	rnchronous			

Dimensions

RS303MR/RS304MD

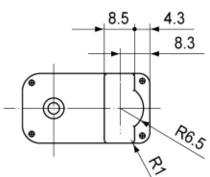


Fig. 5.1 RS303MR/ RS304MD (unit: mm)

RS303MR/RS304MD with Servo Horn and Free Horn

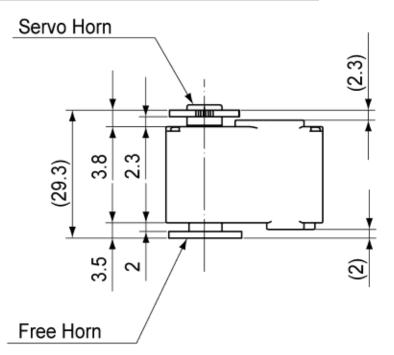
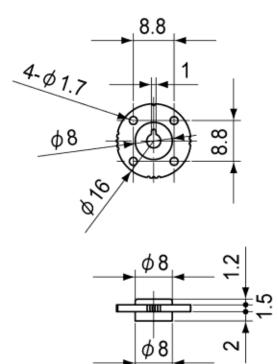



Fig.5.2 RS303MR/RS304MD with Servo Horn and Free Horn (unit: mm)

*A gap of 0.3mm occurs between Servo Horn and the body of servo when the Servo Horn is attached exactly.

*Free Horn is not fixed to the servo. It turns freely around the axis of the bottom case and is unlocked along to the axis of the bottom case.

Servo Horn and Free Horn of RS30x Series

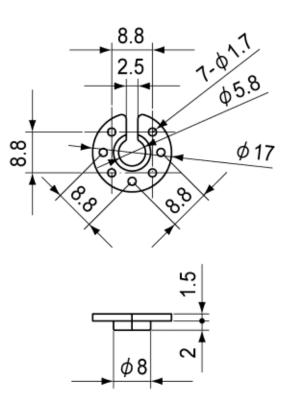


Fig. 5.3 (L) Servo Horn

(R) Free Horn

Option Parts

Table 5.1 Option Parts for RS303MR/RS304MD

Name	
RS301_303 SCREW 2x6	Screws to fix servo horn for RS301CR/RS303MR (10pcs)
RS302_304 SCREW 2x8	Screws to fix servo horn for RS302CD/RS304MD (10pcs)
ROBOT SERVO HORN RH01	Servo Horns for RS30x Series (5pcs)
RS301_303 GEAR SET	Gears for RS301CR/RS303MR
RS302_304 GEAR SET	Gears for RS302CD/RS304MD
RS30x CASE SET	Cases for RS30x Series Servo
RS30x BOTTOM CASE-SHAFT	Bottom Case with Shaft for RS30x Series
RS30x FREE HORN SET	Free Horns for RS30x Series (5pcs)
CC-E3P3-300	Cable to connect TB22PP to other hubs, 300mm
TB22PP	Hub for TTL-Command Type Servo

Fig. 5.4 (L) BB0131 CC-E3P3-300

(R) BB0132 TB22PP

Futaba®

© FUTABA CORPORATION 2011. June.