9

J

∕

P M

Σ

R N

Ζ

П

CONTROLLO FIVFINZFITO-DE SERVOMOTORI

Nelle prossime pagine vedrai come impostare in maniera rapida le posizioni angolari sui servomotori, utilizzando uno speciale strumento messo a disposizione da RoboBasic: 'Servo Motor Real-Time Control'.

ello scorso fascicolo hai iniziato a prendere confidenza con la programmazione in RoboBasic: in particolare hai visto come è possibile impostare delle posizioni sui servomotori per mezzo dell'istruzione **MOVE**. Utilizzando questo comando è necessario conoscere con precisione l'angolo di rotazione che si vuole impostare sulle

(2)

COMPONENTI

(3)

- copertura in plastica del piede destro
- 4 viti tipo M da 2x4 mm
- (3) intelaiatura metallica del piede

squadrette dei servo. Come abbiamo già anticipato nel fascicolo 43, il software RoboBasic mette però a disposizione anche un prezioso strumento, Servo Motor Real-Time Control, con il quale è possibile impostare in maniera 'manuale' l'angolo desiderato sui servo e inserire un'istruzione di tipo MOVE con i parametri settati correttamente in modo automatico. Per impostare la posizione desiderata è possibile agire in due modi diversi. Per prima cosa si possono utilizzare i cursori di controllo dei servo, presenti sull'interfaccia utente del software, e scegliere l'angolo di rotazione desiderato: è possibile vedere all'istante l'effetto di questa operazione sul servomotore collegato alla scheda MR-C3024. L'altra modalità, chiamata 'catch&play', ti permette invece di ruotare direttamente 'a mano' la

squadretta del servo e il software rileverà in maniera automatica la posizione. Nelle prossime pagine vedrai come utilizzare queste due tecniche.

ш

Œ

N N

E 22

Ŀ

Ľ

0

•••ZAKINPROGRESS•••

(1)Prima di iniziare effettuiamo i cablaggi preliminari. Colleghiamo un servomotore al primo pin della scheda di controllo (sO) e connettiamo a quest'ultima il pacco batterie. Infine mettiamo in comunicazione la scheda con il personal computer, utilizzando il cavo seriale.

Accendiamo la scheda MR-C3024 e avviamo l'applicazione RoboBasic. Selezioniamo la voce 'Servo Motor Real-Time Control' dal menu 'Controller'. Se la scheda non è accesa o se il pacco batterie non è sufficientemente carico, potrebbe apparire un messaggio di errore.

(3) Se stiamo avviando lo strumento 'Servo Motor Real-Time Control' per la prima volta, apparirà una schermata simile a quella visualizzata nell'immagine qui a lato. RoboBasic permette di suddividere i 24 servomotori controllabili dalla scheda MR-C3024 in 4 gruppi da 6 (che, come abbiamo già visto, corrispondono ad A, B, C e D) oppure in 3 gruppi da 8. Per fare in modo che i servo vengano 'ripartiti' in 4 gruppi, clicchiamo sul pulsante G6, presente nella parte superiore destra dell'interfaccia (indicato dalla freccia rossa nell'immagine).

(4) L'interfaccia dello strumento 'Servo Motor Real-Time Control' dovrebbe presentarsi ora come nell'immagine accanto. Sono presenti 24 cursori di controllo, suddivisi in 4 gruppi: A, B, C e D. Come abbiamo già visto nel fascicolo 42, sulla scheda MR-C3024 sono presenti 24 porte di controllo dei servomotori,

ripartite in 4 gruppi da 6. I cursori presenti nell'interfaccia utente ci permettono di controllare direttamente gli eventuali servomotori collegati a ciascuna di queste porte.

(5)Per prima cosa testiamo il metodo di controllo diretto utilizzando il primo cursore, con il quale possiamo comandare il servomotore collegato alla porta sO (di fatto, tale servo è il primo del gruppo A). Per fare questo dobbiamo cliccare nel piccolo riquadro bianco presente a lato della scritta 'Motor O', indicato dalla freccia: nel riquadro apparirà un piccolo segno di spunta e il cursore assumerà un nuovo valore, in base all'angolo di rotazione attualmente presente sul servo.

GClicchiamo sulla barretta rossa del cursore e, senza rilasciare il pulsante del mouse, trasciniamola nella posizione '60', come mostrato nell'immagine a lato. La squadretta circolare del servo collegato alla porta sO ruoterà fino ad assumere un angolo di 50°, come mostrato nel riquadro tratteggiato (gli angoli

di rotazione dei servomotori, infatti, vanno da O° a 180°, mentre i parametri per il movimento vanno da 10 a 190).

al-Time Control Window

∢7 Clicchiamo ora sul pulsante 'Move Insert', indicato dalla freccia rossa nell'immagine a lato. In questo modo lo strumento 'Servo Motor Real-Time Control' inserisce nel codice del programma un'istruzione MOVE, relativa al gruppo A, in cui appare la posizione che abbiamo impostato per mezzo del cursore.

B I B

X 01 HOVE G6A, 60,

2

-

Controller Window Help

× 動車 前 律律 三名 16% 16% 14%

(B)Nella Editor Window appare ora l'istruzione 'MOVE G6A, 6O, , , , , '. Poiché in precedenza abbiamo 'spuntato' solo il primo servomotore del gruppo A, gli altri 5 parametri non compaiano (appare solo una serie di virgole, intervallate da spazi). Tale comportamento è perfettamente normale: cioè significa che l'istruzione andrà ad agire solo sul servomotore collegato alla porta sO. OGRAMMAZ

_

Ζ

Π

J

λ

11

Ш

Z

N

Œ

M M M

е С

Ľ

0

10

•••ZAKINPROGRESS•••

(9) Testiamo ora il metodo 'catch&play'. Avviamo nuovamente lo strumento 'Servo Motor Real-Time Control'. Per attivare la modalità 'catch&play', togliamo la spunta che avevamo messo in precedenza, come mostrato nell'immagine. In questo modo, la scheda di controllo 'sblocca' la squadretta del servomotore collegato alla porta sO.

10 Ruotiamo a mano la squadretta del servomotore in qualsiasi posizione desideriamo. Sentiremo una leggera resistenza mentre ruotiamo la squadretta: infatti, anche se è stata sbloccata, il servomotore è comunque alimentato.

Motors Real-Time Control Window

T Motor2

Motor3

Motor

- <

T Motor1

otor Group A

V Motor0

(11) Rimettiamo la spunta nel piccolo riquadro bianco, come mostrato nell'immagine: il cursore dell'interfaccia si porterà su un nuovo valore, corrispondente alla nuova posizione presente sul servo.

16 16 16 16

0

< 136= × 100⊳ 100= 100= 100 Capture Capture Capture Capture Captu Motor Group B < Motor6 Motor9 Motor7 Motor8 Motor' <12>Clicchiamo sul pulsante 'Move Insert', come già visto nello Step 7. Nel codice

NOVE G6A, 60, NOVE G6A, 136,

前 事事 三名

quindi spegnere la scheda di controllo e terminare l'applicazione. I due metodi appena presentati sono estremamente

del programma viene inserita una nuova istruzione MOVE: la posizione specificata corrisponde all'angolo che abbiamo impostato manualmente sulla squadretta. Possiamo

potenti e ci permettono di creare in maniera rapida delle sequenze di movimento. Tali procedimenti, ovviamente, si possono utilizzare anche con più servomotori collegati: sarà sufficiente inserire il segno di spunta per tutti i servo che desideriamo collegare alla scheda.

道 🍬

ZAKINPROGRESS

13

m

Ш П

П

J

П

Ν

Ν

RIEPILOGO Componenti

In questo elenco trovi tutte le tipologie di pezzi che ti sono state fornite a partire dal primo fascicolo: puoi consultarlo quando devi affrontare le fasi di montaggio, in modo da avere un riferimento immediato per i componenti che dovrai utilizzare e per quelli che hai a disposizione.

- armatura del dorso
- armatura del torace
- base inferiore per servo A
- base inferiore per servo B
- base inferiore per servo C
- base superiore per servo A

ROBONOVA-

base superiore per servo C
caricabatterie

base superiore per servo B

- cavo di prolunga per pacco batterie
- cavo seriale
- circuito con LED
- copertura in plastica del piede sinistro e destro
- cuscinetto a sfera
- distanziatore da 3x5 mm
- elementi plastici della mano
- fascetta di fissaggio dei cavi
- fascetta in plastica per il raggruppamento dei cavi
 intelaiatura metallica
- del dorso
- intelaiatura metallica del piede
- intelaiatura metallica del polso
- intelaiatura metallica del torace
- motore elettrico cavo 200 mm (6N200 - Servo C)
- motore elettrico cavo 300 mm (4N300 - Servo A)
- motore elettrico cavo 400 mm (5N400 - Servo B)
- nastro biadesivo
- pacco batterie ricaricabili
- parte anteriore della testa

- ▶ ruota dentata di tipo 1
- ruota dentata di tipo 2
- ruota dentata di tipo 3
- ruota dentata di tipo 4
- scheda MR-C3024
- scheda PC Servo Control
- sensore di contatto
- sensore di luce
- sostegno per potenziometro
- squadretta circolare di tipo 1
- squadretta circolare di tipo 2
- squadretta circolare di tipo 3
- > squadretta circolare di tipo 4
- squadretta circolare per
- il fissaggio della testa
- squadretta metallica a l
- squadretta metallica a U (16 fori)
- squadretta metallica a U (22 fori)
- squadretta metallica ad H
- tubetto di grasso
- visiera
- vite di tipo M da 2,6x4 mm
- vite di tipo M da 2x4 mm
- vite di tipo M da 3x4 mm
 - vite di tipo T-2 da 2,6x6 mm
 - vite di tipo T-2 da 2x12 mm
 - vite di tipo T-2 da 2x18 mm
 - vite di tipo T-2 da 2x21 mm (nera)

parte posteriore della testa
perno da 1,6x14 mm
perno da 1,6x9 mm
rondella da 6x2,2x0,5 mm
rondella da 7,6x2,8x0,5 mm

vite di tipo T-2 da 2x26 mm (nera)
vite di tipo T-2 da 2x4 mm
vite di tipo T-2 da 2x5 mm
vite di tipo T-2 da 2x8 mm