
RoboNova and Robobasic Intermediate Byte Code

Revision 0.1

23th July 2006

Introduction

This information on the Intermediate Byte code used by the is collected from the
tokenised codes downloaded from RoboBasic to the RoboNova and subsequently
executed.

The RoboBASIC development environment.

The development environment comprises the following components:
• Program Editor
• Capability to perform Direct commands
• Real time control
• Downloader
• Intermediate Code Builder

The Downloader is described in a separate document which shows the PC to
RoboNova MR-C3024 serial command set.
http://web.ukonline.co.uk/r.ibbotson/files/C3024Serial.pdf
The downloader transfers the program header and the tokenised intermediate code to
the External EEPROM memory on the MR-C3024. The download dialog starts at
9600 bps and shifts speed to 115K for the actual data transfer.
The downloaded files are entirely self contained, and could be saved (not in
Robobasic) and downloaded by a different application.

The Intermediate code builder:

• Tokenizes the Program from the editor or .rsf file
• Allocates variables to actual Data memory locations
• Inserts actual Program EEPROM memory locations into IM Code
• Replaces some Keywords with multiple tokens

The RoboScript development environment.

The RoboScript development environment is a cut down and simplified version of
Robobasic. It generates identical intermediate code, but not as rich.

How to view the IM Code

The .bas and .rsf files stored by RoboBasic and Roboscript are in source file format
and not in IM code. The converted or compiled code is not stored.
The easiest way to see the code is to install a serial port monitor on the COM port
used for the interface. I use the freeware:
http://www.serial-port-monitor.com/
Find the COM port used by the serial interface to the C3024, and install the monitor
software on this port, before starting RoboBasic or RoboScript.

After starting Robobasic, the serial port monitor will capture all the PC to C3024
commands as described in:
http://web.ukonline.co.uk/r.ibbotson/files/C3024Serial.pdf

When the download command is invoked, then you can see the IM code.

Intermediate Code Storage in MR-C3024

The intermediate code is stored by the downloader into the external EEPROM of the
controller.

The first 16 bytes of the EEPROM contain the program header:

Byte Usage
0 - 7 Program Name
8 Year
9 Month
10 Day
11 Hour
12 Minute
13 Seconds
14 Length in Bytes Low
15 Length in Bytes High

The tokenised code follows and starts at location 16 (0x10)

Intermediate Code Tokens

The following shows the tokens identified so far:
Token
Value
Decimal

Token
Value
HEX Token Type Usage Notes

0 00 NULL
1 01
2 02
3 03
4 04

5 05
6 06
7 07
8 08
9 09

10 0A
11 0B
12 0C
13 0D
14 0E
15 0F
16 10 Literal 0
17 11 Literal 1

18 12 8 bit Literal
1 byte number value
follows

19 13 16 bit Literal
2 byte number value
follows

20 14

21 15 Byte Variable
1 byte number
address follows

22 16 Integer Variable
1 byte number
address follows

23 17
24 18
25 19
26 1A

27 1B "." BIT

1 byte number
address, then 1 byte
number bitmap
follows

for bits in integers
address 2nd byte
as byte at address
+ 1

28 1C
29 1D
30 1E
31 1F
32 20
33 21 Arithmetic +
34 22 Arithmetic -
35 23 Arithmetic *
36 24 Arithmetic /
37 25
38 26 Arithmetic %
39 27 Logic AND
40 28 Logic OR
41 29
42 2A Logic XOR
43 2B
44 2C Logic >>
45 2D Logic <<
46 2E
47 2F
48 30 Relational <
49 31 Relational >

50 32 Relational <=
51 33 Relational >=
52 34 Relational <>
53 35 Relational =
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F
64 40
65 41
66 42
67 43
68 44
69 45
70 46
71 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50
81 51
82 52
83 53
84 54
85 55
86 56
87 57
88 58
89 59
90 5A
91 5B
92 5C
93 5D
94 5E
95 5F
96 60
97 61
98 62
99 63

100 64
101 65

102 66
103 67
104 68
105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70
113 71
114 72
115 73
116 74
117 75
118 76
119 77
120 78
121 79
122 7A
123 7B
124 7C
125 7D
126 7E
127 7F
128 80
129 81
130 82
131 83
132 84
133 85
134 86
135 87
136 88
137 89
138 8A
139 8B
140 8C
141 8D
142 8E
143 8F
144 90
145 91
146 92
147 93
148 94
149 95
150 96
151 97
152 98
153 99

154 9A
155 9B
156 9C
157 9D
158 9E
159 9F
160 A0
161 A1
162 A2
163 A3
164 A4
165 A5
166 A6
167 A7
168 A8
169 A9
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 B0 MOVE
177 B1
178 B2
179 B3 ZERO
180 B4 DIR
181 B5

182 B6
PTP ALL,
HIGHSPEED

00 = high speed off,
01 = highspeed on,
05 = PTP ALLOFF,
06 = PTP ALLON

183 B7
184 B8
185 B9
186 BA MUSIC
187 BB
188 BC
189 BD
190 BE
191 BF TEMPO
192 C0 IF
193 C1 FOR
194 C2 NEXT
195 C3 TO
196 C4 GOTO
197 C5 GOSUB
198 C6 RET
199 C7
200 C8
201 C9
202 CA

203 CB
204 CC POKE
205 CD ROMPOKE
206 CE
207 CF

208 D0 Assign lvalue, expression

expressions are
enumerated from
left to right, no
priority

209 D1 OUT
210 D2 PULSE
211 D3 TOGGLE

212 D4 DELAY
value expression
follows follows

213 D5
214 D6
215 D7
216 D8
217 D9

218 DA MOTOR literal

Motor G24, G8x,
G6x, are all made
to individual motor
commands

219 DB MOTOROFF
220 DC
221 DD SPEED
222 DE PWM
223 DF SERVO
224 E0 LCDINIT
225 E1 CLS
226 E2 LOCATE
227 E3 PRINT
228 E4
229 E5
230 E6
231 E7 BYTEOUT
232 E8
233 E9 WAIT
234 EA STOP
235 EB RUN
236 EC
237 ED PTP SET 00 = off, 01 = on
238 EE
239 EF NOT NOT()
240 F0 IN
241 F1 KEYIN
242 F2 BYTEIN
243 F3
244 F4
245 F5
246 F6 STATE
247 F7

248 F8 RND
249 F9 PEEK
250 FA ROMPEEK
251 FB
252 FC
253 FD
254 FE
255 FF ? NOP

Variables

Variables are allocated by the RoboBASIC tokeniser into the data memory region
addressed by a single byte address. Only bytes (8 bits) or Integers(16bits) are allowed.
Varables start at location 0x40 (actually 0x140 in ATMega address space) , and are
available up to location 0xFE.

Robobasic Commands

The following describes how Robobasic commands are translated to tokens:

Declaration/Definition

The commands DIM, AS, CONST, BYTE, INTEGER, do not create tokens. They are
used to create storage locations as either a byte or integer which are sequentially
allocated in data memory starting at location 0x140. Subsequent referenences to these
locations is made using the “Byte Variable” (0x15) or “Integer Variable” (0x16)
tokens, where the token is followed by a single byte giving the data memory address.

Flow Control Commands

The commands “IF, THEN, ELSE, ELSEIF, ENDIF” are reduced to a sequence of
simple conditional jump instructions by RoboBASIC. These are of the form:

Byte 1 IF Token (0xC0)
Byte 2 Low order jump address if condition not satisfied
Byte 3 High order jump address if condition not satisfied
Byte 4.. NULL terminated condition statement

For example:

10 DIM a as byte
20 DIM b as byte
30 IF a = 0 THEN b = 0
40 ELSEIF a = 1 THEN b = 1
50 ELSE b = 2
60

Translates to:
C0 = If Token

= Physical EEPROM address of Line 40

= Null terminated condition statement (a=0 ?)
= (b = 0)

C0 =if Token
= Physical EEPROM address of Line 50
= Null terminated condition statement (a=1 ?)
= (b = 1)
= (b = 2)

The commands FOR, TO, NEXT are translated to 3 separate tokens with the
following format:

FOR (0xC1), variable token, literal token(start value)
TO (0xC3), variable token, literal token (end value), physical EEPROM location after
for loop
NEXT (0xC2), variable token, physical EEPROM address of TO instruction.

The commands GOTO, GOSUB, and RETURN are translated to 3 different tokens
with the following format:

GOTO (0xC1), physical EEPROM location of jump destination

GOSUB (0xC3), physical EEPROM location of subroutine

RETURN (0xC2)

