
Hitec HSR-8498HB Digital Servo Operation and
Interface

Revision 0.5

Updated 24th January 2007

Introduction
This is based on the data gathered from the HSR 8498HB, both physical and in
operation
Also includes data provided by Hitec in their servo specification and their description
of the operation of the HMI protocol.

Inside the HSR 8498HB Digital Servo
The HSR-8498HB has an ATmega8 processor.

Processor
The HS-5475HB servo is based on the Atmel ATmega8 processor which has:
2.7V to 5.5V
8K Flash self reprogrammable
1024 bytes RAM
512 bytes EEPROM
UART
10 bit ADC
4 MHz Clock

The processor data sheet is available on the Atmel web site:
http://www.atmel.com/dyn/resources/prod_documents/doc2486.pdf

Looking at the processor via the SPI programming interface show it has a boot loader
section located at 0x0E000. Therefore we might assume the firmware in the flash is
upgradeable.

• ATmega8 Configuration:

• 512 Boot Flash at 0x0E000, Boot Vector Enabled

• Brown Out at 2.7V, Brown Out enabled

• Mode 3 further program and verify disabled

• No lock on LPM/SPM in app, Lock on LPM in boot

Mechanics
The mechanics are conventional, motor, gear-train, and feedback pot (4K7Ohm).
The gear train is Karbolite, and has a ratio of about 300:1 between motor and output.

Physical end stops are on output shaft at just over 190 degrees
Mechanical specs (torque, speed, etc.) are on Hitecrcd web page:

http://www.hitecrcd.com
And elsewhere.

To remove the servo PCB it is necessary to de-solder the 3 connections to the base of
the motor. This de-soldering would also be necessary to replace the case, or to
move the cable from one side of the case to the other.

Motor
The motor has a DC resistance of 4.4 ohms, which gives a maximum current draw of

1.35A at 6 Volts, or 1.7A at 7.4 Volts supply
The motor is glued to the servo case, but may be removed is sufficient pressure is

applied.

Motor Driver
The motor is driven by a pair of International Rectifier IRF7389 Complimentary
MOSFETS in Bridge configuration.

Datasheet: http://www.irf.com/product-info/datasheets/data/irf7389.pdf

The Bridges are driven from transistors and linked together. This has the unfortunate
situation that the bridge cannot be turned completely off. So the motor is either driven
or braked while power is applied to servo. No current or temperature monitoring
appears to be performed on motor.

Control Interface
The control interface differs from earlier Hitec digital servos, in that it provides a true
open collector output. This bidirectional control allows the servos to be daisy chained.

The control interface is connected to the processor Port D0 and Port D1 pins which
are also the Uart TX and RX pins. The Port B0/ICP pin is also connected to the
UART RX pin, and likely measures the pulse width in PWM mode

The control interface to the processor is made using what appears to be a dual digital
NPN transistor. The control signal is bi-directional and requires an external pull-up.

Other bits
Processor power is regulated to 3.1 Volts by regulator IC.
4K7 Feedback pot feeds to ADC input on processor between Vref and ground.
The processor measures the servo supply voltage through a simple potential divider

There is no immediate evidence that the processor can actually measure current. This
capability is described in some specification documents and the current may be read
via the HMI protocol. It may be that the current is calculated from the PWM applied
to the servo drive, maybe taking into account the position and the supply voltage.

Schematic

Hitec HMI Interface
The Hitec Multi-protocol Interface has been described in several documents from
Hitec, but never in a complete or consistent way.

Multi-Protocol presumably describes the ability to work in 3 modes:

• Standard Pulse servo mode compatible with radio control servos

• Extended Pulse mode to add position feedback and change settings
Described:
http://www.robonova.de/store/support/index.php?_m=downloads&_a=viewdownl
oad&downloaditemid=33&nav=0,3

• Bidirectional Serial Interface at 19200 bps
Described:
http://www.robonova.de/store/support/index.php?_m=downloads&_a=viewdownl
oad&downloaditemid=94

The width of pulses sent to the servo determines the mode:

Pulse width 550 to 2450 Microseconds = Standard Pulse Mode
Pulse width 50 to 200 Microseconds = Extended Pulse Mode
Pulse width 416 Microseconds = Serial Mode

1. Servo in Standard Pulse Mode

Moving the Servo

The servo responds to PWM type signals in the range 550•S to 2450•S duration.
Since the servo is digital a single pulse is sufficient to move the servo to the desired
position. Pulses outside this range do not move the servo.

The servo midpoint is at 1500•S. In standard operation pulses from 900•S to 2100•S
move the servo through an angle of about 120 degrees. Using the full range of 550•S
to 2450•S an overall operating angle of 190 degrees can be obtained.

Servo Angle (degrees) = (Pulse Width (•S) – 1500) / 10

2. Servo in Extended Pulse Mode

Position Feedback

Hitec have provided some information on the HMI position feedback protocol in their
datasheet. This mode is used by the RoboNova for Position feedback
The first thing to note is that the 50•S pulse which initiates the position feedback also
disables the motor drive. This means that reading the position interrupts the motion,
and so reduces speed and torque that can be achieved by the servo. This also explains
why Robonova jerks when the position is read, and joints under load sag as position is
read continuously.

The advantage of having the servo motion turned off during position feedback is that
the servo can be moved by hand during this time.

A more detailed description of the position feedback based on observed operation is:

The timing B above needs to hold the control signal low for at least 2•S to be sure to
be recognised. The servo will set low about 10•S after recognition. To avoid a glitch
on the control line it is best to wait 10•S after the pulse before the controller goes Hi-
Z.
After reading the position the servo motion must be reinstated using the PWM signal.

The impact of the removal of motor power during position feedback has a significant
impact on suitability for use for closed loop feedback. The entire position feedback
cycle is 2900•S then we have up to 2500•S to re-establish the motion. Therefore
reading the position every 10mS would reduce the speed and torque by over 50%.

Parameter changes
The servo is decsribed to accept parameter changes by receipt of pulses of 100•S
(default Parameter Set 1), 150•S (Parameter Set 2), and 200•S (Parameter Set 3).

No discernable difference was found during testing of these different settings.
The HMI protocol description describes the ability to change the P gain, D gain and
dead band, so presumably they are used then.
Similarity of the protocol to that of the ICS servo suggests the types of parameter
which may be changed.
http://www.kondo-robot.com/software/SVM2346R.EXE

http://www.kondo-robot.com/pdf/ServoManagerfor2346REDManual.pdf

3. Servo in Serial Mode

Electrical Interface
As described above and shown in the circuit diagram the interface is open collector.
Pulses to the servos are positive going pulses using an external pull-up.
When operating in Serial Mode the serial data is not inverted:

Idle State = Stop Bit = “1” Bit = logic low = Ground
Start Bit = “0” Bit = Logic high = +5V via pull-up

To Interface to a PC a non inverting interface from RS232 levels to ttl levels is
required.

The following example uses an FTDI Model TTL-232R USB to TTL cable and a pair
of MOSFET to invert and covert to one- wire.

Frame Level Interface
Serial data is interchanged at 19200 bits per second, 8 bits per character, 2 stop bits,
no parity.

The first byte sent from the controller in a command is the header or packet start byte
of 0x080. This looks

like:

A complete serial Packet is 7 characters long = 7 * (8 +3) bits = 77 bits = 4.03
milliseconds.
Byte 1 = Header (0x080) Packet start

Byte 2 = Command
Byte 3 = Data 1

Byte 4 = Data 2
Byte 5 = Checksum

Byte 6 = Received 1
Byte 7 = Received 2

The checksum is described in the HMI description as Byte 1 + Byte 2 + Byte 3 + Byte
4. This in not correct!
The checksum is actually 256-(Byte 1 + Byte 2+ Byte 3 + Byte4)

To enable the received Bytes to work ‘0x00’ characters must be sent from the
controller to disable drive. The servo will then drive the required bits to zero to make
the response. Therefore the controller sends 7 characters with the last two as ‘0x00’.
Since the bus is bidirectional the serial receiver will receive all 7 bytes.

Command Interface

The currently known commands from Hitec are given below. We expect more when
the serial cable is released.

A) Read version and ID

Byte 1 = Header = 0x080
Byte 2 = Command = 0xE7

Byte 3 = Data 1 = 0x00

Byte 4 = Data 2 = 0x00
Byte 5 = Checksum = 256 – (Byte 1+ Byte2 +Byte3+Byte4)

Byte 6 = Received Byte 1 = Version
Byte 7 = Received Byte 2 = ID

B) Read Current and Voltage

Byte 1 = Header = 0x080

Byte 2 = Command = 0xE8
Byte 3 = Data 1 = 0x00

Byte 4 = Data 2 = 0x00
Byte 5 = Checksum = 256 – (Byte 1+ Byte2 +Byte3+Byte4)

Byte 6 = Received Byte 1 = Current (0 to 255)
Byte 7 = Received Byte 2 = Voltage (0 to 255)

C) Set Motor Speed and Read Position

Byte 1 = Header = 0x080

Byte 2 = Command = 0xE9
Byte 3 = Data 1 = Servo ID (0x00 to 0x7F) : use 0x00

Byte 4 = Data 2 = Speed (0x00 to 0xFF)
Byte 5 = Checksum = 256 – (Byte 1+ Byte2 +Byte3+Byte4)

Byte 6 = Received Byte 1 = Position High
Byte 7 = Received Byte 2 = Position Low

The position is given by ((Position High << 8) + Position Low). Value is in
milliseconds of duration of pulse (1500 = centre). Error between measured and
desired position may be due to dead-band.

D) Set Servo Position

Byte 1 = Header = 0x080
Byte 2 = Command (0x00 to 0x7F) = Servo ID

Byte 3 = Data 1 = Position High
Byte 4 = Data 2 = Position Low

Byte 5 = Checksum = 256 – (Byte 1+ Byte2 +Byte3+Byte4)
Byte 6 = Received Byte 1 = 0x00

Byte 7 = Received Byte 2 = 0x00

The position is given by ((Position High << 8) + Position Low). Value is in
milliseconds of duration of pulse (1500 = centre).

E) Set Motor Go / Stop

Byte 1 = Header = 0x080

Byte 2 = Command = 0xEB
Byte 3 = Data 1 = 0x00

Byte 4 = Data 2 = Stop(0) / Go(1)
Byte 5 = Checksum = 256 – (Byte 1+ Byte2 +Byte3+Byte4)

Byte 6 = Received Byte 1 = 0x03
Byte 7 = Received Byte 2 = 0x03

I cannot make this command work !

That is all the command that Hitec have given to us. It cannot be all, since we
cannot set the ID, and the commands related to setting the P gain, D gain, and
dead-band are not there.

Hitec have given Visual Basic code for the HMI Interface:
http://www.robonova.de/store/support/index.php?_m=knowledgebase&_a=viewar
ticle&kbarticleid=5

Here is a complete VB.Net program to demonstrate the HMI interface. This can
be compiled with the 2005 Express Edition :

http://robosavvy.com/Builders/i-Bot/HMITest.zip

Please send any corrections, new insights or comments, to me via Robosavvy
forum or direct to richard.ibbotson@btinternet.com so I can incorporate
them.

