
Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 235

Column #91 November 2002 by Jon Williams:

Environmental Sensing

If you're not a regular reader or you're fairly new to Nuts & Volts or my column, you may not
know that I am an admitted temperature nut. I don't know why; I've just always been. I'll bet I
tweak the thermostat setting in my apartment three or four times a day. And you can bet that I'm
looking forward to the opportunity to build my own home – with lots of insulation, of course – and
a lot of smart sensors to keep that home comfortable.

On that note of smart sensors ... my boss recently sent me a sample of a new temperature/humidity
sensor from Sensirion: the SHT1x. The SHT1x is, indeed, smart and connecting to the BASIC
Stamp is a breeze through a two-wire interface that is similar to I2C.

The SHT1x is factory calibrated so that it returns temperature with a resolution of 0.01 degrees
Celsius and relative humidity with a resolution of 0.03 percent. The accuracy is better than most
other sensors too. Worst-case temperature accuracy is +/- 2 degrees C – but in the "room
temperature" range the accuracy better than +/- 1 degree C. The relative humidity sensor is
similarly accurate: +/- 3.5% in the range 20% to 80%. This is quite good for a low-cost sensor.

Column #91: Environmental Sensing

Page 236 • The Nuts and Volts of BASIC Stamps (Volume 3)

Figure 91.1: SHT1x to BASIC Stamp Connection

Getting Connected

Connecting to the SHT1x straightforward, just a simple-two wire interface that is similar to I2C
(see Figure 91.1). The difference is that only the bi-directional data line requires a pull-up. The
clock line is directly driven as the SHT1x never affects it (is is the case with I2C). The 330 ohm
resistor between the BASIC Stamp and the SHT1x protects both in the event the Stamp is making
the data line go high and the SHT1x is attempting to pull the data line low.

SHT1x Protocol

Just as the physical connection is similar to I2C, the SHT1x communication protocol is also
similar, but different enough that we probably can't share the SHT1x bus with I2C devices. You'll
remember from the I2C code we developed a few months ago that I2C devices require a "start"
sequence before addressing the bus. Well, so does SHT1x. Take a look at Figure 91.2.

Before attempting to communicate with the SHT1x for the fist time, it's a good idea to reset its
serial interface by running the "connection reset sequence." The sequence consists of nine clock
pulses while the data line is high, followed by the "start" sequence which is the data line being
pulled low in the middle of one clock pulse and released in the middle of the next.

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 237

Figure 91.2: SHT1x Communication Protocol

Let's look at the code – called from the initialization section of our program – that handles the
communication reset sequence.

SHT_Connection_Reset:
 SHIFTOUT ShtData, Clock, LSBFirst, [$FFF\9]

SHT_Start:
 INPUT ShtData
 LOW Clock
 HIGH Clock
 LOW ShtData
 LOW Clock
 HIGH Clock
 INPUT ShtData
 LOW Clock
 RETURN

The first part of the sequence is easily handled with SHIFTOUT. In this case we've specified
$FFF to keep the data line high during the clock pulses and we've also use the \9 parameter to tell
the Stamp how many clock pulses to generate.

The next section is also simple; just a bit clunky because of the requirements to lower and raise the
data line in the middle of clock pulses. There's no way to do this with SHIFTOUT so we just do it
all manually using INPUT, LOW and HIGH. INPUT is used with the data line since the pull-up
will take the line high when we make that pin an input. The clock line is directly driven by the
BASIC Stamp so we use HIGH and LOW to create the appropriate pulse levels.

You'll also notice that there's a label called SHT_Start in the middle of this code. The start
sequence is required before every communication with the SHT1x, so this label provides a
convenient entry point to that code.

Column #91: Environmental Sensing

Page 238 • The Nuts and Volts of BASIC Stamps (Volume 3)

Figure 91.3: Details of the SHT1x Communication Protocol

Figure 91.3 shows the details of the SHT1x protocol. After the transmission start (TS), a
command is sent to the device. The SHT1x command byte allows for a three-bit address field.
Currently, only address %000 is supported, but in the future we'll be able to connect up to eight
sensors to the same SHT1x bus.

Commands and data are sent to the SHT1x a byte at a time with this subroutine:

SHT_Write_Byte:
 SHIFTOUT ShtData, Clock, MSBFirst, [ioByte]
 SHIFTIN ShtData, Clock, LSBPre, [ackBit\1]
 RETURN

This is simple code: it clocks eight bits to the SHT1x and then clocks one acknowledge bit back
in.

After the acknowledge bit, there will be a delay while the SHT1x processes a read (measurement)
command. The end of this delay is signaled by the SHT1x pulling the data line low. Here's the
code that monitors the data line:

SHT_Wait:
 INPUT ShtData
 FOR toDelay = 1 TO 250
 timeOut = Ins.LowBit(ShtData)
 IF (timeOut = No) THEN SHT_Wait_Done
 PAUSE 1
 NEXT

SHT_Wait_Done:
 RETURN

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 239

Since the SHT1x spec says that a 14-bit measurement should be made in no more than 210
milliseconds (+15%), this code uses a FOR-NEXT loop with an embedded delay. If the entire
loop runs, it would be something greater than 250 milliseconds since scanning the data line does
add to the loop timing.

In the loop we will grab the state of the data line and store it in timeOut. If the data line goes low
before the loop ends, the IF-THEN logic will break us out. The constant "No" has been defined as
having a value of zero, "Yes" having a value of one. If the data line does not go low before the
end of the loop, the code will exit with timeOut containing the value one ("Yes"). Unless
something goes wrong, you probably won't see this happen.

Now that the SHT1x has taken a measurement, we can retrieve the result. Again, this is done one
byte at a time.

SHT_Read_Byte:
 SHIFTIN ShtData, Clock, MSBPre, [ioByte]
 SHIFTOUT ShtData, Clock, LSBFirst, [ackBit\1]
 INPUT ShtData
 RETURN

As you can see, SHT_Read_Byte is the compliment of SHT_Write_Byte. This time we will read
eight bits from the SHT1x, then output an acknowledge bit. And, just like I2C, the acknowledge
bit will be zero (low) until the last read; then it will be one (high). Note that we must manually
release the data line since the SHIFTOUT for the acknowledge bit makes the data line an output.

Let's put it all together and read the temperature from the SHT1x.

SHT_Measure_Temp:
 GOSUB SHT_Start
 ioByte = ShtTemp
 GOSUB SHT_Write_Byte
 GOSUB SHT_Wait
 ackBit = Ack
 GOSUB SHT_Read_Byte
 soT.HighByte = ioByte
 ackBit = NoAck
 GOSUB SHT_Read_Byte
 soT.LowByte = ioByte

This subroutine begins by calling the "start" sequence, then sending the ShtTemp (read
temperature; %00011) command. This is followed by the wait and finally reading two bytes from
the SHT1x. The temperature data is returned as a 14-bit value, with the MSB sent first.

Column #91: Environmental Sensing

Page 240 • The Nuts and Volts of BASIC Stamps (Volume 3)

The value retuned by the SHT1x is converted to standard units with the following formulas:

Celsius = soT x 0.01 – 40
Fahrenheit = soT x 0.018 – 40

Uh oh ... here we go with those dastardly fractional numbers again – and the Stamp only does
integer math. It's okay, we've got that neat ** operator in our bag of tricks. Remember, the **
operator allows us to multiply by a fractional value less than 1.0 in units of 1/65536.

Let's look at the end of the SHT_Measure_Temp subroutine and then go through it.

 tC = soT / 10 - 400
 tF = soT ** 11796 - 400
 RETURN

Since the Stamp does do integer math, we'll start by multiplying the formula conversion factors by
10 so that our temperature values are expressed in tenths of a degree. Here are the formulas,
converted for our PBASIC code:

Celsius (tenths) = soT * 0.1 – 400
Fahrenheit (tenths) = soT * 0.18 – 400

Multiplying by 0.1 is the same as dividing by ten, so we'll kept the Celsius equation simple.
Converting the fractional value for Fahrenheit works like this:

0.18 x 65536 = 11796

As you can see, that was actually quite painless and we end up with an accurate temperature
reading. Let's move on to humidity:

SHT_Measure_Humidity:
 GOSUB SHT_Start
 ioByte = ShtHumi
 GOSUB SHT_Write_Byte
 GOSUB SHT_Wait
 ackBit = Ack
 GOSUB SHT_Read_Byte
 soRH.HighByte = ioByte
 ackBit = NoAck
 GOSUB SHT_Read_Byte
 soRH.LowByte = ioByte

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 241

The process for reading humidity from the SHT1x is identical to reading the temperature. What
will be returned is a 12-bit relative humidity value. The tricky part comes in the conversion to a
usable value as the humidity output is slightly non-linear. Here's the formula for converting the
sensor output to relative humidity:

RH = (soRH x 0.0405) – (soRH2 x 0.0000028) – 4

This formula presents a couple of problems in the second section. First, squaring the raw output
value will almost always cause a roll-over (greater than 65535) error and the constant value in that
section is very small.

The way we can work around this is to multiply our sensor output by the square root of the
constant. Here's how we break-up that tricky middle part:

soRH2 x 0.0000028 à soRH x 0.0017 * soRH x 0.0017

If we multiply our constant factor by ten, then take its square root, we get this:

 soRH x 0.00529 * soRH x 0.00529 à (soRH ** 346) * (soRH ** 347)

We can help ourselves even more by multiplying the conversion factors by ten (again), then
applying a bit of round-off math like we used to do in school. This ends up giving us the best
accuracy using this simplified approach:

 rhLin = (soRH ** 26542)

 rhLin = rhLin - ((soRH ** 3468) * (soRH ** 3468) + 50 / 100)
 rhLin = rhLin – 40

The SHT1x specification states that for temperatures "significantly different" from 25ºC (77ºF) the
temperature coefficient of the RH sensor should be considered. The formula for temperature
compensating the sensor is given as:

RHTC = (TC – 25) x (SORH x 0.00008 + 0.01) + RHLIN

Again, we've got very small fractional numbers so what we'll do is multiply by 100. For the
middle section:

0.00008 x 100 = 0.008 à 0.008 * 65536 = 524
0.01 x 100 = 1

Column #91: Environmental Sensing

Page 242 • The Nuts and Volts of BASIC Stamps (Volume 3)

The temperature is expressed in tenths so we'll end up dividing it down to whole units to prevent a
roll-over error when multiplied by the middle section. Now that the first part of the equation is in
100ths, we have to multiply the rhLin by ten to match before we add the two values together.
Finally, we do the rounding by adding five and dividing the final result by ten to keep the rtTrue
value in tenths of a percent.

Here's what it looks like:

 rhTrue = ((tC / 10 - 25) * (soRH ** 524 + 1)
 rhTrue = rhTrue + (rhLin * 10)) + 5 / 10
 RETURN

Yes, I know that was a little crazy, but in the end, it works – and works pretty well. Getting used
to math like this will be helpful as we begin to explore other types of sensors, especially those
with a nonlinear output. Okay, now that we can read the SHT1x and convert its output values to
usable units, it's time to show it off.

Our little demo program uses a terminal window to display data so we can easily verify that the
sensor is working. But what about an embedded application where the temperature and humidity
may not change rapidly? How can our application check the sensor?

Well, the folks at Sesirion thought about that and actually built a small heater into the SHT1x.
The device can be tested by taking readings, turning the heater on for a few seconds, then taking
another set of readings. The temperature should go up and the humidity down. The heater is also
useful in very moist environments to prevent condensation from forming on the sensing element.

To turn on the heater, we must change a bit in the SHT1x status register. The following code is
from the top part of the demo:

Heater_On:
 DEBUG "SHT1x heater on", CR
 status = %00000100
 GOSUB SHT_Write_Status
 DEBUG "Waiting 2 seconds", CR
 PAUSE 2000

Heater_Off:
 DEBUG "SHT1x heater off", CR, CR
 status = %00000000
 GOSUB SHT_Write_Status

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 243

Figure 91.4: Example Output with DEBUG

As you can see by the code, when bit two of the status byte is set, the heater will be turned on.
You want to be careful not to leave the heater on for very long, and it doesn't take long at all to see
a significant change in the output values.

Here's the code that sends the status byte to the SHT1x:

SHT_Write_Status:
 GOSUB SHT_Start
 ioByte = ShtStatW
 GOSUB SHT_Write_Byte
 ioByte = status
 GOSUB SHT_Write_Byte
 RETURN

Writing to the status register is a two-byte sequence: first the command, then the data to write.
The command tells the SHT1x that the following byte is the status byte and it is written into the
SHT1x. There is a complimentary subroutine in the code that reads the status byte. It's there for
future use, but not actually required by the demo. Another bit in the status byte allows us to

Column #91: Environmental Sensing

Page 244 • The Nuts and Volts of BASIC Stamps (Volume 3)

change the SHT1x output resolution: eight bits for humidity and 12 bits for temperature. There's
really no benefit to doing this in Stamp-based applications.

After the sensor check demonstration, the program continuously loops and displays the sensor
values as shown in Figure 91.4.

It's In The Packaging

I know that a few of you are thinking, "Great, this is a cool sensor, but how am I going to connect
a surface mount device to my BASIC Stamp?" Don't worry, it's being taken care of. Parallax
likes this little sensor so much we're making an adaptor board for it that even includes the
resistors. The package will end up in an eight-pin DIP format – about the same size as a 555 timer
IC. Check the Parallax web site for details.

Credit Where It's Due

I really have to thank my pal, Tracy Allen, for his help with the SHT1x math and converting the
equations to PBASIC. If you've never been to Tracy's web site, you owe yourself a visit as Tracy
provides more solid technical information on PBASIC programming than at any other site I've
seen.

Check it out at www.emesystems.com. If you thought the math we did here was tricky, wait until
you see what Tracy has to offer. In a word ... Wow. He also has excellent explanations of those
pesky ** and */ operators and how to get the most from them. When you visit Tracy's site, be sure
to set a bookmark in your browser since his site is worthy of frequent visits.

Next month we're going to work with another sensor – an accelerometer. Until then, Happy
Stamping.

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 245

' ==
'
' Program Listing 91.1
' File...... SHT1x.BS2
' Purpose... Interface to Sensirion SHT1x temperature/humidity sensor
' Author.... Jon Williams
' E-mail.... jwilliams@parallaxinc.com
' Started...
' Updated... 28 SEP 2002
'
' {$STAMP BS2}
'
' ==

' --
' Program Description
' --
'
' This program demonstrates the interface and conversion of SHT1x data to
' usable program values. This program takes advantage of the PBASIC **
' operator to multiply by a fractional value.
'
' For detailed information on the use and application of the ** operator,
' see Tracy Allen's web page at this link:
'
' -- http://www.emesystems.com/BS2math1.htm
'
' For Tracy's SHT1x code [very advanced]:
'
' -- http://www.emesystems.com/OL2sht1x.htm
'
' For SHT11/15 documentation and app notes, visit:
'
' -- http://www.sensirion.com

' --
' Revision History
' --

' --
' I/O Definitions
' --

ShtData CON 1 ' bi-directional data
Clock CON 0

Column #91: Environmental Sensing

Page 246 • The Nuts and Volts of BASIC Stamps (Volume 3)

' --
' Constants
' --

ShtTemp CON %00011 ' read temperature
ShtHumi CON %00101 ' read humidity
ShtStatW CON %00110 ' status register write
ShtStatR CON %00111 ' status register read
ShtReset CON %11110 ' soft reset (wait 11 ms after)

Ack CON 0
NoAck CON 1

No CON 0
Yes CON 1

MoveTo CON 2 ' for DEBUG control
ClrRt CON 11 ' clear DEBUG line to right

DegSym CON 186 ' degrees symbol for DEBUG

' --
' Variables
' --

ioByte VAR Byte ' data from/to SHT1x
ackBit VAR Bit ' ack/nak from/to SHT1x
toDelay VAR Byte ' timeout delay timer
timeOut VAR Bit ' timeout status

soT VAR Word ' temp counts from SHT1x
tC VAR Word ' temp - celcius
tF VAR Word ' temp - fahrenheit

soRH VAR Word ' humidity counts from SHT1x
rhLin VAR Word ' humidity; linearized
rhTrue VAR Word ' humidity; temp compensated

status VAR Byte ' SHT1x status byte

' --
' EEPROM Data
' --

' --
' Initialization
' --

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 247

Initialize:
 GOSUB SHT_Connection_Reset ' reset device connection

 PAUSE 250 ' let DEBUG window open
 DEBUG CLS
 DEBUG "SHT1x Demo", CR
 DEBUG "----------", CR

 ' GOTO Main ' skip heater demo

' --
' Program Code
' --

Sensor_Demo:
 GOSUB SHT_Measure_Temp
 DEBUG MoveTo, 0, 3
 DEBUG "tF...... "
 DEBUG DEC (tF / 10), ".", DEC1 tF, DegSym, ClrRt, CR

 GOSUB SHT_Measure_Humidity
 DEBUG "rhLin... "
 DEBUG DEC (rhLin / 10), ".", DEC1 rhLin, "%", ClrRt, CR, CR

Heater_On:
 DEBUG "SHT1x heater on", CR
 status = %00000100 ' heater bit = On
 GOSUB SHT_Write_Status
 DEBUG "Waiting 2 seconds", CR
 PAUSE 2000

Heater_Off:
 DEBUG "SHT1x heater off", CR, CR
 status = %00000000 ' heater bit = Off
 GOSUB SHT_Write_Status

 GOSUB SHT_Measure_Temp
 DEBUG "tF...... "
 DEBUG DEC (tF / 10), ".", DEC1 tF, DegSym, ClrRt, CR

 GOSUB SHT_Measure_Humidity
 DEBUG "rhLin... "
 DEBUG DEC (rhLin / 10), ".", DEC1 rhLin, "%", ClrRt, CR, CR

 PAUSE 5000

Main:
 DEBUG CLS
 DEBUG "SHT1x Demo", CR
 DEBUG "----------", CR

Column #91: Environmental Sensing

Page 248 • The Nuts and Volts of BASIC Stamps (Volume 3)

Main2:
 GOSUB SHT_Measure_Temp
 DEBUG MoveTo, 0, 3
 DEBUG "soT...... "
 DEBUG DEC soT, ClrRt, CR
 DEBUG "tC....... "
 DEBUG DEC (tC / 10), ".", DEC1 tC, DegSym, ClrRt, CR
 DEBUG "tF....... "
 DEBUG DEC (tF / 10), ".", DEC1 tF, DegSym, ClrRt

 GOSUB SHT_Measure_Humidity
 DEBUG MoveTo, 0, 7
 DEBUG "soRH..... "
 DEBUG DEC soRH, ClrRt, CR
 DEBUG "rhLin.... "
 DEBUG DEC (rhLin / 10), ".", DEC1 rhLin, "%", ClrRt, CR
 DEBUG "rhTrue... "
 DEBUG DEC (rhTrue / 10), ".", DEC1 rhTrue, "%", ClrRt

 PAUSE 1000 ' minimum delay between readings
 GOTO Main2

 END

' --
' Subroutines
' --

' connection reset: 9 clock cyles with ShtData high, then start sequence
'
SHT_Connection_Reset:
 SHIFTOUT ShtData, Clock, LSBFirst, [$FFF\9]

' generates SHT1x "start" sequence
' _____ _____
' ShtData |_______|
' ___ ___
' Clock ___| |___| |___
'
SHT_Start:
 INPUT ShtData ' let pull-up take line high
 LOW Clock
 HIGH Clock
 LOW ShtData
 LOW Clock
 HIGH Clock
 INPUT ShtData
 LOW Clock
 RETURN

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 249

' measure temperature
' -- celcius = soT * 0.01 - 40
' -- fahrenheit = soT * 0.018 - 40
'
SHT_Measure_Temp:
 GOSUB SHT_Start ' alert device
 ioByte = ShtTemp ' temperature command
 GOSUB SHT_Write_Byte ' send command
 GOSUB SHT_Wait ' wait until measurement done
 ackBit = Ack ' another read follows
 GOSUB SHT_Read_Byte ' get MSB
 soT.HighByte = ioByte
 ackBit = NoAck ' last read
 GOSUB SHT_Read_Byte ' get LSB
 soT.LowByte = ioByte

 ' Note: Conversion factors are multiplied by 10 to return the
 ' temperature values in tenths of degrees

 tC = soT / 10 - 400 ' convert to tenths C
 tF = soT ** 11796 - 400 ' convert to tenths F
 RETURN

' measure humidity
'
SHT_Measure_Humidity:
 GOSUB SHT_Start ' alert device
 ioByte = ShtHumi ' humidity command
 GOSUB SHT_Write_Byte ' send command
 GOSUB SHT_Wait ' wait until measurement done
 ackBit = Ack ' another read follows
 GOSUB SHT_Read_Byte ' get MSB
 soRH.HighByte = ioByte
 ackBit = NoAck ' last read
 GOSUB SHT_Read_Byte ' get LSB
 soRH.LowByte = ioByte

 ' linearize humidity
 ' rhLin = (soRH * 0.0405) - (soRH^2 * 0.0000028) - 4
 '
 ' for the BASIC Stamp:
 ' rhLin = (soRH * 0.0405) - (soRH * 0.004 * soRH * 0.0007) - 4
 '
 ' Conversion factors are multiplied by 10 and then rounded to
 ' return tenths
 '
 rhLin = (soRH ** 26542)
 rhLin = rhLin - ((soRH ** 3468) * (soRH ** 3468) + 50 / 100)
 rhLin = rhLin - 40

Column #91: Environmental Sensing

Page 250 • The Nuts and Volts of BASIC Stamps (Volume 3)

 ' temperature compensated humidity
 ' rhTrue = (tC - 25) * (soRH * 0.00008 + 0.01) + rhLin
 '
 ' Conversion factors are multiplied by 100 to improve accuracy and then
 ' rounded off.
 '
 rhTrue = ((tC / 10 - 25) * (soRH ** 524 + 1) + (rhLin * 10)) + 5 / 10
 RETURN

' sends "status"
'
SHT_Write_Status:
 GOSUB SHT_Start ' alert device
 ioByte = ShtStatW ' write to status reg command
 GOSUB SHT_Write_Byte ' send command
 ioByte = status
 GOSUB SHT_Write_Byte
 RETURN

' returns "status"
'
SHT_Read_Status:
 GOSUB SHT_Start ' alert device
 ioByte = ShtStatW ' write to status reg command
 GOSUB SHT_Read_Byte ' send command
 ackBit = NoAck ' only one byte to read
 GOSUB SHT_Read_Byte
 RETURN

' sends "ioByte"
' returns "ackBit"
'
SHT_Write_Byte:
 SHIFTOUT ShtData, Clock, MSBFirst, [ioByte] ' send byte
 SHIFTIN ShtData, Clock, LSBPre, [ackBit\1] ' get ack bit
 RETURN

' returns "ioByte"
' sends "ackBit"
'
SHT_Read_Byte:
 SHIFTIN ShtData, Clock, MSBPre, [ioByte] ' get byte
 SHIFTOUT ShtData, Clock, LSBFirst, [ackBit\1] ' send ack bit
 INPUT ShtData ' release data line
 RETURN

Column #91: Environmental Sensing

The Nuts and Volts of BASIC Stamps (Volume 3) • Page 251

' wait for device to finish measurement (pulls data line low)
' -- timeout after ~1/4 second
'
SHT_Wait:
 INPUT ShtData ' data line is input
 FOR toDelay = 1 TO 250 ' give ~1/4 second to finish
 timeOut = Ins.LowBit(ShtData) ' scan data line
 IF (timeOut = No) THEN SHT_Wait_Done ' if low, we're done
 PAUSE 1
 NEXT

SHT_Wait_Done:
 RETURN

' reset SHT1x with soft reset
'
SHT_Soft_Reset:
 GOSUB SHT_Connection_Reset ' reset the connection
 ioByte = ShtReset ' reset command
 ackBit = NoAck ' only one byte to send
 GOSUB SHT_Write_Byte ' send it
 PAUSE 11 ' wait at least 11 ms
 RETURN

